Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JPEN J Parenter Enteral Nutr ; 46(5): 1107-1118, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34705281

RESUMO

BACKGROUND: Extensive intestinal resection may lead to short bowel (SB) syndrome, resulting in intestinal insufficiency or intestinal failure (IF). Intestinal insufficiency and IF involve deficiency of the proglucagon-derived hormones glucagon-like peptide-1 (GLP-1) and GLP-2. Two major problems of SB are epithelial surface loss and accelerated transit. Standard treatment now targets intestinal adaptation with a GLP-2 analogue to enlarge absorptive surface area. It is possible that additional benefit can be gained from a combination of GLP-1 and GLP-2 activity, with the aim to enlarge intestinal surface area and slow intestinal transit. METHODS: The GLP-1- and GLP-2-specific effects of the novel dual GLP-1 receptor (GLP-1R) and GLP-2 receptor (GLP-2R) agonist dapiglutide (rINN) were characterized in rodents. Furthermore, in a murine SB model of intestinal insufficiency with 40% ileocecal resection, the influence of dapiglutide on intestinal growth, body weight, food intake, volume status, and stool water content was tested against vehicle and sham-operated male mice. RESULTS: Dapiglutide significantly improves oral glucose tolerance, reduces intestinal transit time, and promotes intestinal growth. In the SB mouse model, dapiglutide promotes body weight recovery, despite unchanged intake of liquid diet. Dapiglutide promotes significant intestinal growth, as indicated by significantly increased villus height as well as intestinal length. Furthermore, dapiglutide reduces stool water losses, resulting in reduced plasma aldosterone. CONCLUSION: Dapiglutide possesses specific and potent GLP-1R and GLP-2R agonist effects in rodents. In the murine SB model, combined unimolecular GLP-1R and GLP-2R stimulation with dapiglutide potently attenuates intestinal insufficiency and potentially also IF.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Síndrome do Intestino Curto , Animais , Peso Corporal/fisiologia , Modelos Animais de Doenças , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 2 , Masculino , Camundongos , Síndrome do Intestino Curto/tratamento farmacológico , Água
2.
Plant Cell Environ ; 40(11): 2754-2770, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28763829

RESUMO

Zinc (Zn) deficiency negatively impacts the development and health of plants and affects crop yield. When experiencing low Zn, plants undergo an adaptive response to maintain Zn homeostasis. We provide further evidence for the role of F-group transcription factors, AtbZIP19 and AtbZIP23, in responding to Zn deficiency in Arabidopsis and demonstrate the sensitivity and specificity of this response. Despite their economic importance, the role of F-group bZIPs in cereal crops is largely unknown. Here, we provide new insights by functionally characterizing these in barley (Hordeum vulgare), demonstrating an expanded number of F-group bZIPs (seven) compared to Arabidopsis. The F-group barley bZIPs, HvbZIP56 and HvbZIP62, partially rescue the Zn-dependent growth phenotype and ZIP-transporter gene regulation of an Arabidopsis bzip19-4 bzip23-2 mutant. This supports a conserved mechanism of action in adapting to Zn deficiency. HvbZIP56 localizes to the cytoplasm and nucleus when expressed in Arabidopsis and tobacco. Promoter analysis demonstrates that the barley ZIP transporters that are upregulated under Zn deficiency contain cis Zn-deficiency response elements (ZDREs). ZDREs are also found in particular barley bZIP promoters. This study represents a significant step forward in understanding the mechanisms controlling Zn responses in cereal crops, and will aid in developing strategies for crop improvement.


Assuntos
Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Zinco/deficiência , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Hidroponia , Micronutrientes/metabolismo , Mutação/genética , Motivos de Nucleotídeos/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transporte Proteico , Frações Subcelulares/metabolismo
3.
J Comput Aided Mol Des ; 29(2): 155-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25377899

RESUMO

The inhibition of tumor suppressor p53 protein due to its direct interaction with oncogenic murine double minute 2 (MDM2) protein, plays a central role in almost 50 % of all human tumor cells. Therefore, pharmacological inhibition of the p53-binding pocket on MDM2, leading to p53 activation, presents an important therapeutic target against these cancers expressing wild-type p53. In this context, the present study utilized an integrated virtual and experimental screening approach to screen a database of approved drugs for potential p53-MDM2 interaction inhibitors. Specifically, using an ensemble rigid-receptor docking approach with four MDM2 protein crystal structures, six drug molecules were identified as possible p53-MDM2 inhibitors. These drug molecules were then subjected to further molecular modeling investigation through flexible-receptor docking followed by Prime/MM-GBSA binding energy analysis. These studies identified fluspirilene, an approved antipsychotic drug, as a top hit with MDM2 binding mode and energy similar to that of a native MDM2 crystal ligand. The molecular dynamics simulations suggested stable binding of fluspirilene to the p53-binding pocket on MDM2 protein. The experimental testing of fluspirilene showed significant growth inhibition of human colon tumor cells in a p53-dependent manner. Fluspirilene also inhibited growth of several other human tumor cell lines in the NCI60 cell line panel. Taken together, these computational and experimental data suggest a potentially novel role of fluspirilene in inhibiting the p53-MDM2 interaction. It is noteworthy here that fluspirilene has a long history of safe human use, thus presenting immediate clinical potential as a cancer therapeutic. Furthermore, fluspirilene could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against several types of cancer. Importantly, the combined computational and experimental screening protocol presented in this study may also prove useful for screening other commercially-available compound databases for identification of novel, small molecule p53-MDM2 inhibitors.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Fluspirileno/química , Proteínas Proto-Oncogênicas c-mdm2/química , Proteína Supressora de Tumor p53/química , Animais , Neoplasias do Colo/patologia , Cristalografia por Raios X , Fluspirileno/uso terapêutico , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA