Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Med ; 4(8): 554-579.e9, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37572651

RESUMO

BACKGROUND: The human endometrium undergoes recurring cycles of growth, differentiation, and breakdown in response to sex hormones. Dysregulation of epithelial-stromal communication during hormone-mediated signaling may be linked to myriad gynecological disorders for which treatments remain inadequate. Here, we describe a completely defined, synthetic extracellular matrix that enables co-culture of human endometrial epithelial and stromal cells in a manner that captures healthy and disease states across a simulated menstrual cycle. METHODS: We parsed cycle-dependent endometrial integrin expression and matrix composition to define candidate cell-matrix interaction cues for inclusion in a polyethylene glycol (PEG)-based hydrogel crosslinked with matrix metalloproteinase-labile peptides. We semi-empirically screened a parameter space of biophysical and molecular features representative of the endometrium to define compositions suitable for hormone-driven expansion and differentiation of epithelial organoids, stromal cells, and co-cultures of the two cell types. FINDINGS: Each cell type exhibited characteristic morphological and molecular responses to hormone changes when co-encapsulated in hydrogels tuned to a stiffness regime similar to the native tissue and functionalized with a collagen-derived adhesion peptide (GFOGER) and a fibronectin-derived peptide (PHSRN-K-RGD). Analysis of cell-cell crosstalk during interleukin 1B (IL1B)-induced inflammation revealed dysregulation of epithelial proliferation mediated by stromal cells. CONCLUSIONS: Altogether, we demonstrate the development of a fully synthetic matrix to sustain the dynamic changes of the endometrial microenvironment and support its applications to understand menstrual health and endometriotic diseases. FUNDING: This work was supported by The John and Karine Begg Foundation, the Manton Foundation, and NIH U01 (EB029132).


Assuntos
Endométrio , Matriz Extracelular , Feminino , Humanos , Técnicas de Cocultura , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Endométrio/metabolismo , Peptídeos/análise , Peptídeos/química , Peptídeos/metabolismo , Hormônios/análise , Hormônios/metabolismo
2.
Neurooncol Adv ; 4(1): vdac049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669012

RESUMO

Background: Pediatric gliomas comprise a diverse set of brain tumor entities that have substantial long-term ramifications for patient survival and quality of life. However, the study of these tumors is currently limited due to a lack of authentic models. Additionally, many aspects of pediatric brain tumor biology, such as tumor cell invasiveness, have been difficult to study with currently available tools. To address these issues, we developed a synthetic extracellular matrix (sECM)-based culture system to grow and study primary pediatric brain tumor cells. Methods: We developed a brain-like sECM material as a supportive scaffold for the culture of primary, patient-derived pediatric glioma cells and established patient-derived cell lines. Primary juvenile brainstem-derived murine astrocytes were used as a feeder layer to support the growth of primary human tumor cells. Results: We found that our culture system facilitated the proliferation of various primary pediatric brain tumors, including low-grade gliomas, and enabled ex vivo testing of investigational therapeutics. Additionally, we found that tuning this sECM material allowed us to assess high-grade pediatric glioma cell invasion and evaluate therapeutic interventions targeting invasive behavior. Conclusion: Our sECM culture platform provides a multipurpose tool for pediatric brain tumor researchers that enables both a wide breadth of biological assays and the cultivation of diverse tumor types.

3.
Nat Mater ; 21(1): 110-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34518665

RESUMO

Experimental in vitro models that capture pathophysiological characteristics of human tumours are essential for basic and translational cancer biology. Here, we describe a fully synthetic hydrogel extracellular matrix designed to elicit key phenotypic traits of the pancreatic environment in culture. To enable the growth of normal and cancerous pancreatic organoids from genetically engineered murine models and human patients, essential adhesive cues were empirically defined and replicated in the hydrogel scaffold, revealing a functional role of laminin-integrin α3/α6 signalling in establishment and survival of pancreatic organoids. Altered tissue stiffness-a hallmark of pancreatic cancer-was recapitulated in culture by adjusting the hydrogel properties to engage mechano-sensing pathways and alter organoid growth. Pancreatic stromal cells were readily incorporated into the hydrogels and replicated phenotypic traits characteristic of the tumour environment in vivo. This model therefore recapitulates a pathologically remodelled tumour microenvironment for studies of normal and pancreatic cancer cells in vitro.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/metabolismo , Animais , Matriz Extracelular , Humanos , Hidrogéis/metabolismo , Camundongos , Organoides , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
4.
Nat Protoc ; 16(8): 3874-3900, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183870

RESUMO

The presence of microbes in the colon impacts host physiology. Therefore, microbes are being evaluated as potential treatments for colorectal diseases. Humanized model systems that enable robust culture of primary human intestinal cells with bacteria facilitate evaluation of potential treatments. Here, we describe a protocol that can be used to coculture a primary human colon monolayer with aerotolerant bacteria. Primary human colon cells maintained as organoids are dispersed into single-cell suspensions and then seeded on collagen-coated Transwell inserts, where they attach and proliferate to form confluent monolayers within days of seeding. The confluent monolayers are differentiated for an additional 4 d and then cocultured with bacteria. As an example application, we describe how to coculture differentiated colon cells for 8 h with four strains of Bacteroides thetaiotaomicron, each engineered to detect different colonic microenvironments via genetically embedded logic circuits incorporating deoxycholic acid and anhydrotetracycline sensors. Characterization of this coculture system reveals that barrier function remains intact in the presence of engineered B. thetaiotaomicron. The bacteria stay close to the mucus layer and respond in a microenvironment-specific manner to the inducers (deoxycholic acid and anhydrotetracycline) of the genetic circuits. This protocol thus provides a useful mucosal barrier system to assess the effects of bacterial cells that respond to the colonic microenvironment, and may also be useful in other contexts to model human intestinal barrier properties and microbiota-host interactions.


Assuntos
Bacteroides thetaiotaomicron/fisiologia , Colo/citologia , Células Epiteliais/fisiologia , Mucosa Intestinal/citologia , Técnicas de Cocultura/métodos , Humanos , Organoides
5.
Front Oncol ; 11: 676135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123844

RESUMO

Metastatic breast cancer remains a largely incurable and fatal disease with liver involvement bearing the worst prognosis. The danger is compounded by a subset of disseminated tumor cells that may lie dormant for years to decades before re-emerging as clinically detectable metastases. Pathophysiological signals can drive these tumor cells to emerge. Prior studies indicated CXCR3 ligands as being the predominant signals synergistically and significantly unregulated during inflammation in the gut-liver axis. Of the CXCR3 ligands, IP-10 (CXCL10) was the most abundant, correlated significantly with shortened survival of human breast cancer patients with metastatic disease and was highest in those with triple negative (TNBC) disease. Using a complex ex vivo all-human liver microphysiological (MPS) model of dormant-emergent metastatic progression, CXCR3 ligands were found to be elevated in actively growing populations of metastatic TNBC breast cancer cells whereas they remained similar to the tumor-free hepatic niche in those with dormant breast cancer cells. Subsequent stimulation of dormant breast cancer cells in the ex vivo metastatic liver MPS model with IP-10 triggered their emergence in a dose-dependent manner. Emergence was indicated to occur indirectly possibly via activation of the resident liver cells in the surrounding metastatic microenvironment, as stimulation of breast cancer cells with exogenous IP-10 did not significantly change their migratory, invasive or proliferative behavior. The findings reveal that IP-10 is capable of triggering the emergence of dormant breast cancer cells within the liver metastatic niche and identifies the IP-10/CXCR3 as a candidate targetable pathway for rational approaches aimed at maintaining dormancy.

6.
ACS Infect Dis ; 7(4): 838-848, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33745271

RESUMO

Intestinal homeostasis is tightly regulated by the orchestrated actions of a multitude of cell types, including enterocytes, goblet cells, and immune cells. Disruption of intestinal barrier function can increase susceptibility to pathogen invasion and destabilize commensal microbial-epithelial-immune interaction, manifesting in various intestinal and systemic pathologies. However, a quantitative understanding of how these cell types communicate and collectively contribute to tissue function in health and disease is lacking. Here, we utilized a human intestinal epithelial-dendritic cell model and multivariate analysis of secreted factors to investigate the cellular crosstalk in response to physiological and/or pathological cues (e.g., endotoxin, nonsteroidal anti-inflammation drug (NSAID)). Specifically, we demonstrated that treatment with diclofenac (DCF), an NSAID commonly used to treat inflammation associated with acute infection and other conditions, globally suppressed cytokine secretion when dosed in isolation. However, the disruption of barrier function induced by DCF allowed for luminal lipopolysaccharide (LPS) translocation and activation of resident immune cells that overrode the anti-inflammatory influence of DCF. DCF-facilitated inflammation in the presence of LPS was in part mediated by upregulation of macrophage migration inhibitory factor (MIF), an important regulator of innate immunity. However, while neutralization of MIF activity normalized inflammation, it did not lead to intestinal healing. Our data suggest that systems-wide suppression of inflammation alone is insufficient to achieve mucosal healing, especially in the presence of DCF, the target of which, the COX-prostaglandin pathway, is central to mucosal homeostasis. Indeed, DCF removal postinjury enabled partial recovery of intestinal epithelium functions, and this recovery phase was associated with upregulation of a subset of cytokines and chemokines, implicating their potential contribution to intestinal healing. The results highlight the utility of an intestinal model capturing immune function, coupled with multivariate analysis, in understanding molecular mechanisms governing response to microbial factors, supporting application in studying host-pathogen interactions.


Assuntos
Diclofenaco , Endotoxinas , Células Epiteliais , Humanos , Inflamação , Mucosa Intestinal
7.
Am J Reprod Immunol ; 85(3): e13347, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32946598

RESUMO

PROBLEM: To compare inflammatory- and immune-associated peritoneal cytokines of adolescents and adults with and without endometriosis. METHODS OF STUDY: In a nested case-control study in multiple university-affiliated scientific centers, ten adolescents and thirteen adults with visually and histologically confirmed endometriosis (cases), thirteen adolescents with visually suspected endometriosis but indeterminate (seven patients) or negative (six patients) histology, and fifteen adults undergoing surgery for non-malignant gynecologic disease without endometriosis (controls) underwent laparoscopic aspiration of peritoneal fluid (PF), from which PF and conditioned medium (CM) cytokine levels were assayed. RESULTS: Compared to adults with endometriosis, MCP-3, IL-12p40, MIP-1ß, and IL-15 were significantly higher among adolescents with endometriosis, while TNF-ß and CTACK were lower among adolescents. These differences were similar comparing adolescents with endometriosis to adult controls except for MIP-1ß, which was not statistically different. MIP-1ß was, however, the only cytokine observed to differ between adult cases and controls. There were no significant differences in CM cytokines among the three groups. Results were similar when analyses were restricted to samples collected (a) during menstrual cycle days 1-10, (b) from patients unexposed to exogenous hormones, or (c) from all adolescents despite presence or absence of histologic endometriosis. CONCLUSION: Biologically relevant and statistically significant differences in six PF cytokines were observed and suggest a more pro-invasion cytokine profile among adolescents with endometriosis. Adolescents with endometriosis have unique peritoneal cytokine profiles and molecular behavior when compared to adults with and without endometriosis.


Assuntos
Líquido Ascítico/metabolismo , Citocinas/metabolismo , Endometriose/imunologia , Endométrio/patologia , Inflamação/imunologia , Adolescente , Adulto , Estudos de Casos e Controles , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Feminino , Humanos , Ciclo Menstrual/imunologia , Adulto Jovem
8.
Biomaterials ; 264: 120231, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130485

RESUMO

Three-dimensional micro-physiological in vitro representations of human tissues and organs are emerging as important models of human pathophysiology and stand to make a significant impact on the process of drug discovery and development. An enduring need is to create microvascular networks within such 3D models, particularly for tissues with high metabolic demand such as the liver, pancreas, and the central nervous system. Here we report a facile approach to drive angiogenesis in nascent 3D culture models by embedding degradable hydrogel microbeads coated with induced pluripotent stem cell-derived endothelial cells (MB-iPSC-ECs) in a dense epithelial tissue. Specifically, we describe an approach to optimize microbead scaffold cues, independent of the external environment, by evaluating the iPSC-EC to microbead adhesion properties and how they influence the propensity of cells to both coat microbeads uniformly and undergo sprouting angiogenesis. We encapsulated MB-iPSC-ECs in PEG hydrogels, systematically varied the relative concentration of integrin-targeting peptide motifs in the microbead and surrounding environment, and found that an optimal microbead scaffold ligand regime of 0.1-0.25 mM promotes iPSC-EC monolayer formation and subsequent invasion into the synthetic matrix. We used these results to predict the regime of adhesion ligand required to promote angiogenesis of MB-iPSC-ECs in a co-culture hepatocarcinoma (HEPG2) microtissue model. This modular degradable microbead platform has the potential to promote angiogenic sprouting, which may ultimately support vascularization of a variety of cell-dense tissues.


Assuntos
Células Endoteliais , Polímeros , Células Cultivadas , Humanos , Hidrogéis , Ligantes , Microesferas
9.
J Minim Invasive Gynecol ; 28(2): 325-331, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32615330

RESUMO

STUDY OBJECTIVE: To assess the feasibility of a noncontact radio sensor as an objective measurement tool to study postoperative recovery from endometriosis surgery. DESIGN: Prospective cohort pilot study. SETTING: Center for minimally invasive gynecologic surgery at an academically affiliated community hospital in conjunction with in-home monitoring. PATIENTS: Patients aged above 18 years who sleep independently and were scheduled to have laparoscopy for the diagnosis and treatment of suspected endometriosis. INTERVENTIONS: A wireless, noncontact sensor, Emerald, was installed in the subjects' home and used to capture physiologic signals without body contact. The device captured objective data about the patients' movement and sleep in their home for 5 weeks before surgery and approximately 5 weeks postoperatively. The subjects were concurrently asked to complete a daily pain assessment using a numeric rating scale and a free text survey about their daily symptoms. MEASUREMENTS AND MAIN RESULTS: Three women aged 23 years to 39 years and with mild to moderate endometriosis participated in the study. Emerald-derived sleep and wake times were contextualized and corroborated by select participant comments from retrospective surveys. In addition, self-reported pain levels and 1 sleep variable, sleep onset to deep sleep time, showed a significant (p <.01), positive correlation with next-day-pain scores in all 3 subjects: r = 0.45, 0.50, and 0.55. In other words, the longer it took the subject to go from sleep onset to deep sleep, the higher their pain score the following day. CONCLUSION: A patient's experience with pain is challenging to meaningfully quantify. This study highlights Emerald's unique ability to capture objective data in both preoperative functioning and postoperative recovery in an endometriosis population. The utility of this uniquely objective data for the clinician-patient relationship is just beginning to be explored.


Assuntos
Endometriose/cirurgia , Invenções , Laparoscopia/reabilitação , Procedimentos Cirúrgicos Minimamente Invasivos/reabilitação , Monitorização Fisiológica/métodos , Doenças Peritoneais/cirurgia , Sono/fisiologia , Adulto , Técnicas Biossensoriais/métodos , Endometriose/fisiopatologia , Endometriose/reabilitação , Feminino , Humanos , Medição da Dor , Dor Pós-Operatória/diagnóstico , Dor Pós-Operatória/etiologia , Doenças Peritoneais/fisiopatologia , Doenças Peritoneais/reabilitação , Projetos Piloto , Período Pós-Operatório , Estudos Prospectivos , Estudos Retrospectivos , Inquéritos e Questionários , Telemedicina/instrumentação , Telemedicina/métodos , Tecnologia sem Fio , Adulto Jovem
10.
Semin Reprod Med ; 38(2-03): 179-196, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-33176387

RESUMO

Adenomyosis remains an enigmatic disease in the clinical and research communities. The high prevalence, diversity of morphological and symptomatic presentations, array of potential etiological explanations, and variable response to existing interventions suggest that different subgroups of patients with distinguishable mechanistic drivers of disease may exist. These factors, combined with the weak links to genetic predisposition, make the entire spectrum of the human condition challenging to model in animals. Here, after an overview of current approaches, a vision for applying physiomimetic modeling to adenomyosis is presented. Physiomimetics combines a system's biology analysis of patient populations to generate hypotheses about mechanistic bases for stratification with in vitro patient avatars to test these hypotheses. A substantial foundation for three-dimensional (3D) tissue engineering of adenomyosis lesions exists in several disparate areas: epithelial organoid technology; synthetic biomaterials matrices for epithelial-stromal coculture; smooth muscle 3D tissue engineering; and microvascular tissue engineering. These approaches can potentially be combined with microfluidic platform technologies to model the lesion microenvironment and can potentially be coupled to other microorgan systems to examine systemic effects. In vitro patient-derived models are constructed to answer specific questions leading to target identification and validation in a manner that informs preclinical research and ultimately clinical trial design.


Assuntos
Adenomiose/patologia , Modelos Biológicos , Engenharia Tecidual/métodos , Endométrio/patologia , Feminino , Humanos , Miométrio/patologia
11.
Am J Obstet Gynecol ; 223(5): 624-664, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32707266

RESUMO

Women's health concerns are generally underrepresented in basic and translational research, but reproductive health in particular has been hampered by a lack of understanding of basic uterine and menstrual physiology. Menstrual health is an integral part of overall health because between menarche and menopause, most women menstruate. Yet for tens of millions of women around the world, menstruation regularly and often catastrophically disrupts their physical, mental, and social well-being. Enhancing our understanding of the underlying phenomena involved in menstruation, abnormal uterine bleeding, and other menstruation-related disorders will move us closer to the goal of personalized care. Furthermore, a deeper mechanistic understanding of menstruation-a fast, scarless healing process in healthy individuals-will likely yield insights into a myriad of other diseases involving regulation of vascular function locally and systemically. We also recognize that many women now delay pregnancy and that there is an increasing desire for fertility and uterine preservation. In September 2018, the Gynecologic Health and Disease Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development convened a 2-day meeting, "Menstruation: Science and Society" with an aim to "identify gaps and opportunities in menstruation science and to raise awareness of the need for more research in this field." Experts in fields ranging from the evolutionary role of menstruation to basic endometrial biology (including omic analysis of the endometrium, stem cells and tissue engineering of the endometrium, endometrial microbiome, and abnormal uterine bleeding and fibroids) and translational medicine (imaging and sampling modalities, patient-focused analysis of menstrual disorders including abnormal uterine bleeding, smart technologies or applications and mobile health platforms) to societal challenges in health literacy and dissemination frameworks across different economic and cultural landscapes shared current state-of-the-art and future vision, incorporating the patient voice at the launch of the meeting. Here, we provide an enhanced meeting report with extensive up-to-date (as of submission) context, capturing the spectrum from how the basic processes of menstruation commence in response to progesterone withdrawal, through the role of tissue-resident and circulating stem and progenitor cells in monthly regeneration-and current gaps in knowledge on how dysregulation leads to abnormal uterine bleeding and other menstruation-related disorders such as adenomyosis, endometriosis, and fibroids-to the clinical challenges in diagnostics, treatment, and patient and societal education. We conclude with an overview of how the global agenda concerning menstruation, and specifically menstrual health and hygiene, are gaining momentum, ranging from increasing investment in addressing menstruation-related barriers facing girls in schools in low- to middle-income countries to the more recent "menstrual equity" and "period poverty" movements spreading across high-income countries.


Assuntos
Saúde Global , Letramento em Saúde , Produtos de Higiene Menstrual , Menstruação , Hemorragia Uterina , Saúde da Mulher , Adenomiose/fisiopatologia , Atitude , Evolução Biológica , Pesquisa Biomédica , Congressos como Assunto , Países em Desenvolvimento , Educação , Endometriose/fisiopatologia , Endométrio/citologia , Endométrio/microbiologia , Endométrio/fisiologia , Feminino , Humanos , Leiomioma/fisiopatologia , Distúrbios Menstruais/fisiopatologia , Células-Tronco Mesenquimais , Microbiota , Técnicas Analíticas Microfluídicas , National Institute of Child Health and Human Development (U.S.) , Regeneração/fisiologia , Células-Tronco/fisiologia , Terminologia como Assunto , Engenharia Tecidual , Estados Unidos , Neoplasias Uterinas/fisiopatologia , Útero/citologia , Útero/diagnóstico por imagem , Útero/microbiologia , Útero/fisiologia
12.
Biomaterials ; 254: 120125, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502894

RESUMO

Epithelial organoids derived from human donor tissues are important tools in fields ranging from regenerative medicine to drug discovery. Organoid culture requires expansion of stem/progenitor cells in Matrigel, a tumor-derived extracellular matrix (ECM). An alternative completely synthetic ECM could improve reproducibility, clarify mechanistic phenomena, and enable human implantation of organoids. We designed synthetic ECMs with tunable biomolecular and biophysical properties to identify gel compositions supporting human tissue-derived stem/progenitor epithelial cells as enteroids and organoids starting with single cells rather than tissue fragments. The synthetic ECMs consist of 8-arm PEG-macromers modified with ECM-binding peptides and different combinations of integrin-binding peptides, crosslinked with peptides susceptible to matrix metalloprotease (MMP) degradation, and tuned to exhibit a range of biophysical properties. A gel containing an α2ß1 integrin-binding peptide (GFOGER) and matrix binder peptides grafted to a 20 kDa 8-arm PEG macromer showed the most robust support of human duodenal and colon enteroids and endometrial organoids. In this synthetic ECM, human intestinal enteroids and endometrial organoids emerge from single cells and show cell-specific and apicobasal polarity markers upon differentiation. Intestinal enteroids, in addition, retain their proliferative capacity, are functionally responsive to basolateral stimulation, express canonical markers of intestinal crypt cells including Paneth cells, and can be serially passaged. The success of this synthetic ECM in supporting human postnatal organoid culture from multiple different donors and from both the intestine and endometrium suggests it may be broadly useful for other epithelial organoid culture.


Assuntos
Intestinos , Organoides , Endométrio , Feminino , Humanos , Reprodutibilidade dos Testes , Células-Tronco
13.
Artigo em Inglês | MEDLINE | ID: mdl-31988098

RESUMO

A clinically relevant risk factor for Clostridioides difficile-associated disease (CDAD) is recent antibiotic treatment. Although broad-spectrum antibiotics have been shown to disrupt the structure of the gut microbiota, some antibiotics appear to increase CDAD risk without being highly active against intestinal anaerobes, suggesting direct nonantimicrobial effects. We examined cell biological effects of antibiotic exposure that may be involved in bacterial pathogenesis using an in vitro germfree human colon epithelial culture model. We found a marked loss of mucosal barrier and immune function with exposure to the CDAD-associated antibiotics clindamycin and ciprofloxacin, distinct from the results of pretreatment with an antibiotic unassociated with CDAD, tigecycline, which did not reduce innate immune or mucosal barrier functions. Importantly, pretreatment with CDAD-associated antibiotics sensitized mucosal barriers to C. difficile toxin activity in primary cell-derived enteroid monolayers. These data implicate commensal-independent gut mucosal barrier changes in the increased risk of CDAD with specific antibiotics and warrant further studies in in vivo systems. We anticipate this work to suggest potential avenues of research for host-directed treatment and preventive therapies for CDAD.


Assuntos
Antibacterianos/efeitos adversos , Clostridioides difficile/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa/fisiologia , Junções Íntimas/efeitos dos fármacos , Antibacterianos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Ciprofloxacina/efeitos adversos , Ciprofloxacina/farmacologia , Clindamicina/efeitos adversos , Clindamicina/farmacologia , Enterocolite Pseudomembranosa/tratamento farmacológico , Enterocolite Pseudomembranosa/microbiologia , Células HT29 , Humanos , Mucosa/microbiologia , Fatores de Risco , Tigeciclina/efeitos adversos , Tigeciclina/farmacologia , Junções Íntimas/microbiologia
14.
Biomacromolecules ; 21(2): 566-580, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31846304

RESUMO

Expanding the toolkit of modular and functional synthetic material systems for biomimetic extracellular matrices (ECMs) is needed for achieving more predictable and characterizable cell culture. In the present study, we engineered a synthetic hydrogel system incorporating poly(γ-propargyl-l-glutamate) (PPLG), an N-carboxy anhydride polypeptide with a unique α-helical secondary structure. PPLG macromers were cross-linked into poly(ethylene glycol) (PEG) networks to form hybrid polypeptide-PEG hydrogels. We compared the properties of PPLG-PEG to systems where the PPLG macromers were replaced with 8-arm PEG or poly(γ-propargyl-d,l-glutamate) (PPDLG), which has a flexible random-coil conformation. We evaluated each hydrogel system as synthetic ECMs for two-dimensional (2D) endothelial cell culture. Cells on PPLG-PEG displayed superior attachment and spreading at comparable adhesion ligand incorporation concentrations, demonstrating the unique benefit of combining the more rigid and hydrophobic α-helical PPLG within the more flexible and hydrophilic PEG matrix. The modular PPLG macromer is a promising building block for developing other types of PPLG-based hydrogels with favorable and tunable properties.


Assuntos
Técnicas de Cultura de Células/instrumentação , Matriz Extracelular/química , Hidrogéis/química , Peptídeos/química , Adesão Celular , Técnicas de Cultura de Células/métodos , Células Cultivadas , Recuperação de Fluorescência Após Fotodegradação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células-Tronco Pluripotentes Induzidas/citologia , Permeabilidade
15.
Biochemistry ; 58(38): 3938-3942, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31474112

RESUMO

Metalloproteinases (MMPs) are zinc-dependent endopeptidases that cleave various proteins to regulate normal and diseased cellular functions, and as such, they play significant roles in human tissue development, homeostasis, and the pathogenesis of many diseases, including cancers, endometriosis, arthritis, etc. Most MMPs are produced as zymogenic latent enzymes that must be cleaved to activate their catalytic regions, and localized endogenous protein inhibitors further regulate activity. Accordingly, they operate within recursive networks to degrade extracellular matrix proteins and regulate cell signaling by cleaving growth factors and receptors at the cell surface and in the local pericellular environment. Thus, high-resolution information about the concentrations of specific active MMPs, revealing their intricate regulatory networks, may improve disease diagnosis and treatment. Here, we introduce a new and readily mastered method for measuring MMP activities in a multiplex fashion. We integrate aspects of activity-based enzyme labeling with commercial high-throughput, multiplexed protein quantification to yield the metalloproteinase activity multiplexed bead-based immunoassay (MAMBI). Assays of recombinant active MMP-1, -2, -3, -7, -8, -9, -12, and -13 establish the sensitivity and selectivity of MAMBI detection. Levels of active native MMPs are similarly characterized in conditioned cell culture medium, menstrual effluent, and uterine tissue. In a single MAMBI (5 µL), we achieve sensitivities equal to those from leading single-plex MMP activity detection strategies (e.g., 10-15 M for MMP-1). We also demonstrate high-throughput inhibitor screening via the MAMBI approach in complex, patient-derived samples.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Imunoensaio/métodos , Metaloproteinases da Matriz/análise , Adulto , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz/metabolismo , Pessoa de Meia-Idade , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Útero/enzimologia
16.
J Cancer ; 9(14): 2559-2570, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026855

RESUMO

Background: Increases in expression of ADAM10 and ADAM17 genes and proteins are inconsistently found in cancer lesions, and are not validated as clinically useful biomarkers. The enzyme-specific proteolytic activities, which are solely mediated by the active mature enzymes, directly reflect enzyme cellular functions and might be superior biomarkers than the enzyme gene or protein expressions, which comprise the inactive proenzymes and active and inactivated mature enzymes. Methods: Using a recent modification of the proteolytic activity matrix analysis (PrAMA) measuring specific enzyme activities in cell and tissue lysates, we examined the specific sheddase activities of ADAM10 (ADAM10sa) and ADAM17 (ADAM17sa) in human non-small cell lung-carcinoma (NSCLC) cell lines, patient primary tumors and blood exosomes, and the noncancerous counterparts. Results: NSCLC cell lines and patient tumors and exosomes consistently showed significant increases of ADAM10sa relative to their normal, inflammatory and/or benign-tumor controls. Additionally, stage IA-IIB NSCLC primary tumors of patients who died of the disease exhibited greater increases of ADAM10sa than those of patients who survived 5 years following diagnosis and surgery. In contrast, NSCLC cell lines and patient tumors and exosomes did not display increases of ADAM17sa. Conclusions: This study is the first to investigate enzyme-specific proteolytic activities as potential cancer biomarkers. It provides a proof-of-concept that ADAM10sa could be a biomarker for NSCLC early detection and outcome prediction. To ascertain that ADAM10sa is a useful cancer biomarker, further robust clinical validation studies are needed.

17.
Proc Natl Acad Sci U S A ; 115(29): 7503-7508, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967135

RESUMO

The surfaces of many hollow or tubular tissues/organs in our respiratory, gastrointestinal, and urogenital tracts are covered by mucosa with folded patterns. The patterns are induced by mechanical instability of the mucosa under compression due to constrained growth. Recapitulating this folding process in vitro will facilitate the understanding and engineering of mucosa in various tissues/organs. However, scant attention has been paid to address the challenge of reproducing mucosal folding. Here we mimic the mucosal folding process using a cell-laden hydrogel film attached to a prestretched tough-hydrogel substrate. The cell-laden hydrogel constitutes a human epithelial cell lining on stromal component to recapitulate the physiological feature of a mucosa. Relaxation of the prestretched tough-hydrogel substrate applies compressive strains on the cell-laden hydrogel film, which undergoes mechanical instability and evolves into morphological patterns. We predict the conditions for mucosal folding as well as the morphology of and strain in the folded artificial mucosa using a combination of theory and simulation. The work not only provides a simple method to fold artificial mucosa but also demonstrates a paradigm in tissue engineering via harnessing mechanical instabilities guided by quantitative mechanics models.


Assuntos
Células Epiteliais/metabolismo , Hidrogéis/química , Modelos Biológicos , Engenharia Tecidual , Linhagem Celular Tumoral , Células Epiteliais/citologia , Humanos , Mucosa/citologia , Mucosa/metabolismo
18.
Sci Rep ; 8(1): 8015, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789564

RESUMO

Microphysiological systems (MPS), consisting of tissue constructs, biomaterials, and culture media, aim to recapitulate relevant organ functions in vitro. MPS components are housed in fluidic hardware with operational protocols, such as periodic complete media replacement. Such batch-like operations provide relevant nutrients and remove waste products but also reset cell-secreted mediators (e.g. cytokines, hormones) and potentially limit exposure to drugs (and metabolites). While each component plays an essential role for tissue functionality, MPS-specific nutrient needs are not yet well-characterized nor utilized to operate MPSs at more physiologically-relevant conditions. MPS-specific nutrient needs for gut (immortalized cancer cells), liver (human primary hepatocytes) and cardiac (iPSC-derived cardiomyocytes) MPSs were experimentally quantified. In a long-term study of the gut MPS (10 days), this knowledge was used to design operational protocols to maintain glucose and lactate at desired levels. This quasi-steady state operation was experimentally validated by monitoring glucose and lactate as well as MPS functionality. In a theoretical study, nutrient needs of an integrated multi-MPS platform (gut, liver, cardiac MPSs) were computationally simulated to identify long-term quasi-steady state operations. This integrative experimental and computational approach demonstrates the utilization of quantitative multi-scale characterization of MPSs and incorporating MPS-specific information to establish more physiologically-relevant experimental operations.


Assuntos
Técnicas de Cultura de Células/métodos , Metabolismo Energético/fisiologia , Microtecnologia/métodos , Especificidade de Órgãos/fisiologia , Integração de Sistemas , Fenômenos Bioquímicos , Células CACO-2 , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Simulação por Computador , Meios de Cultura/química , Meios de Cultura/farmacologia , Ecossistema , Glucose/metabolismo , Células HT29 , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Intestinos/citologia , Ácido Láctico/metabolismo , Fígado/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microtecnologia/instrumentação , Miócitos Cardíacos/citologia , Biologia de Sistemas
19.
Mol Cell Proteomics ; 17(4): 619-630, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29353230

RESUMO

Breast cancer mortality predominantly results from dormant micrometastases that emerge as fatal outgrowths years after initial diagnosis. In order to gain insights concerning factors associated with emergence of liver metastases, we recreated spontaneous dormancy in an all-human ex vivo hepatic microphysiological system (MPS). Seeding this MPS with small numbers (<0.05% by cell count) of the aggressive MDA-MB-231 breast cancer cell line, two populations formed: actively proliferating ("growing"; EdU+), and spontaneously quiescent ("dormant"; EdU-). Following treatment with a clinically standard chemotherapeutic, the proliferating cells were eliminated and only quiescent cells remained; this residual dormant population could then be induced to a proliferative state ("emergent"; EdU+) by physiologically-relevant inflammatory stimuli, lipopolysaccharide (LPS) and epidermal growth factor (EGF). Multiplexed proteomic analysis of the MPS effluent enabled elucidation of key factors and processes that correlated with the various tumor cell states, and candidate biomarkers for actively proliferating (either primary or secondary emergence) versus dormant metastatic cells in liver tissue. Dormancy was found to be associated with signaling reflective of cellular quiescence even more strongly than the original tumor-free liver tissue, whereas proliferative nodules presented inflammatory signatures. Given the minimal tumor burden, these markers likely represent changes in the tumor microenvironment rather than in the tumor cells. A computational decision tree algorithm applied to these signatures indicated the potential of this MPS for clinical discernment of each metastatic stage from blood protein analysis.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fígado/metabolismo , Fígado/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino
20.
J Cancer ; 8(19): 3916-3932, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187866

RESUMO

Increases in expression of ADAM10 and ADAM17 genes and proteins have been evaluated, but not validated as cancer biomarkers. Specific enzyme activities better reflect enzyme cellular functions, and might be better biomarkers than enzyme genes or proteins. However, no high throughput assay is available to test this possibility. Recent studies have developed the high throughput real-time proteolytic activity matrix analysis (PrAMA) that integrates the enzymatic processing of multiple enzyme substrates with mathematical-modeling computation. The original PrAMA measures with significant accuracy the activities of individual metalloproteinases expressed on live cells. To make the biomarker assay usable in clinical practice, we modified PrAMA by testing enzymatic activities in cell and tissue lysates supplemented with broad-spectrum non-MP enzyme inhibitors, and by maximizing the assay specificity using systematic mathematical-modeling analyses. The modified PrAMA accurately measured the absence and decreases of ADAM10 sheddase activity (ADAM10sa) and ADAM17sa in ADAM10-/- and ADAM17-/- mouse embryonic fibroblasts (MEFs), and ADAM10- and ADAM17-siRNA transfected human cancer cells, respectively. It also measured the restoration and inhibition of ADAM10sa in ADAM10-cDNA-transfected ADAM10-/- MEFs and GI254023X-treated human cancer cell and tissue lysates, respectively. Additionally, the modified PrAMA simultaneously quantified with significant accuracy ADAM10sa and ADAM17sa in multiple human tumor specimens, and showed the essential characteristics of a robust high throughput multiplex assay that could be broadly used in biomarker studies. Selectively measuring specific enzyme activities, this new clinically applicable assay is potentially superior to the standard protein- and gene-expression assays that do not distinguish active and inactive enzyme forms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA