Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400472, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809180

RESUMO

Synthetic hydrogels provide controllable 3D environments, which can be used to study fundamental biological phenomena. The growing body of evidence that cell behavior depends upon hydrogel stress relaxation creates a high demand for hydrogels with tissue-like viscoelastic properties. Here, a unique platform of synthetic polyethylene glycol (PEG) hydrogels in which star-shaped PEG molecules are conjugated with alendronate and/or RGD peptides, attaining modifiable degradability as well as flexible cell adhesion, is created. Novel reversible ionic interactions between alendronate and calcium phosphate nanoparticles, leading to versatile viscoelastic properties with varying initial elastic modulus and stress relaxation time, are identified. This new crosslinking mechanism provides shear-thinning properties resulting in differential cellular responses between cancer cells and stem cells. The novel hydrogel system is an improved design to the other ionic crosslink platforms and opens new avenues for the development of pathologically relevant cancer models, as well as minimally invasive approaches for cell delivery for potential regenerative therapies.

2.
iScience ; 27(4): 109288, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38532886

RESUMO

RNA-binding proteins (RBPs) are emerging as important regulators of cancer pathogenesis. We reveal that the RBPs LARP4A and LARP4B are differentially overexpressed in osteosarcoma and osteosarcoma lung metastases, as well as in prostate cancer. Depletion of LARP4A and LARP4B reduced tumor growth and metastatic spread in xenografts, as well as inhibiting cell proliferation, motility, and migration. Transcriptomic profiling and high-content multiparametric analyses unveiled a central role for LARP4B, but not LARP4A, in regulating cell cycle progression in osteosarcoma and prostate cancer cells, potentially through modulating key cell cycle proteins such as Cyclins B1 and E2, Aurora B, and E2F1. This first systematic comparison between LARP4A and LARP4B assigns new pro-tumorigenic functions to LARP4A and LARP4B in bone and prostate cancer, highlighting their similarities while also indicating distinct functional differences. Uncovering clear biological roles for these paralogous proteins provides new avenues for identifying tissue-specific targets and potential druggable intervention.

3.
Int J Biochem Cell Biol ; 161: 106441, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356415

RESUMO

Recent developments have mounted a stunning body of evidence underlying the importance of RNA binding proteins (RBPs) in cancer research. In this minireview we focus on LARP4A and LARP4B, two paralogs belonging to the superfamily of La-related proteins, and provide a critical overview of current research, including their roles in cancer pathogenesis and cell proliferation, migration, cell cycle and apoptosis. We highlight current controversies surrounding LARP4A and LARP4B and conclude that their complex roles in tumorigenesis are cell-, tissue- and context-dependent, warning that caution must be exercised before categorising either protein as an oncoprotein or tumour-suppressor. We also reveal that LARP4A and LARP4B have often been confused with one another, adding uncertainty in delineating their functions. We suggest that further functional and mechanistic studies of LARP4 proteins present significant challenges for future investigations to recognise the vital contributions of these RBPs in cancer research.


Assuntos
Neoplasias , Ribonucleoproteínas , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Autoantígenos/genética , Neoplasias/genética , Proteínas de Ligação a RNA/genética , Genes Supressores de Tumor
4.
Cell Death Differ ; 29(12): 2459-2471, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36138226

RESUMO

Oncohistones represent compelling evidence for a causative role of epigenetic perturbations in cancer. Giant cell tumours of bone (GCTs) are characterised by a mutated histone H3.3 as the sole genetic driver present in bone-forming osteoprogenitor cells but absent from abnormally large bone-resorbing osteoclasts which represent the hallmark of these neoplasms. While these striking features imply a pathogenic interaction between mesenchymal and myelomonocytic lineages during GCT development, the underlying mechanisms remain unknown. We show that the changes in the transcriptome and epigenome in the mesenchymal cells caused by the H3.3-G34W mutation contribute to increase osteoclast recruitment in part via reduced expression of the TGFß-like soluble factor, SCUBE3. Transcriptional changes in SCUBE3 are associated with altered histone marks and H3.3G34W enrichment at its enhancer regions. In turn, osteoclasts secrete unregulated amounts of SEMA4D which enhances proliferation of mutated osteoprogenitors arresting their maturation. These findings provide a mechanism by which GCTs undergo differentiation in response to denosumab, a drug that depletes the tumour of osteoclasts. In contrast, hTERT alterations, commonly found in malignant GCT, result in the histone-mutated neoplastic cells being independent of osteoclasts for their proliferation, predicting unresponsiveness to denosumab. We provide a mechanism for the initiation of GCT, the basis of which is dysfunctional cross-talk between bone-forming and bone-resorbing cells. The findings highlight the role of tumour/microenvironment bidirectional interactions in tumorigenesis and how this is exploited in the treatment of GCT.


Assuntos
Neoplasias Ósseas , Tumor de Células Gigantes do Osso , Humanos , Tumor de Células Gigantes do Osso/genética , Tumor de Células Gigantes do Osso/tratamento farmacológico , Tumor de Células Gigantes do Osso/patologia , Histonas/genética , Histonas/metabolismo , Denosumab/metabolismo , Denosumab/uso terapêutico , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Osteoclastos/metabolismo , Remodelação Óssea/genética , Microambiente Tumoral , Proteínas de Ligação ao Cálcio/metabolismo
5.
EMBO Mol Med ; 12(11): e11131, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33047515

RESUMO

Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Adolescente , Criança , Humanos , Medicina Molecular , Sarcoma/genética , Sarcoma/terapia
6.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326543

RESUMO

Many Pasteurella multocida strains are carried as commensals, while some cause disease in animals and humans. Some type D strains cause atrophic rhinitis in pigs, where the causative agent is known to be the Pasteurella multocida toxin (PMT). PMT activates three families of G-proteins-Gq/11, G12/13, and Gi/o-leading to cellular mitogenesis and other sequelae. The effects of PMT on whole animals in vivo have been investigated previously, but only at the level of organ-specific pathogenesis. We report here the first study to screen all the organs targeted by the toxin by using the QE antibody that recognizes only PMT-modified G-proteins. Under our experimental conditions, short-term treatment of PMT is shown to have multiple in vivo targets, demonstrating G-alpha protein modification, stimulation of proliferation markers and expression of active ß-catenin in a tissue- and cell-specific manner. This highlights the usefulness of PMT as an important tool for dissecting the specific roles of different G-alpha proteins in vivo.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Proliferação de Células/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Pasteurella multocida/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Imuno-Histoquímica , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Timo/efeitos dos fármacos , Timo/metabolismo , Útero/efeitos dos fármacos , Útero/metabolismo , beta Catenina/metabolismo
7.
ACR Open Rheumatol ; 1(6): 382-393, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31777818

RESUMO

OBJECTIVE: The association between inflammation and dysregulated bone remodeling is apparent in rheumatoid arthritis and is recapitulated in the human tumor necrosis factor transgenic (hTNFtg) mouse model. We investigated whether extracellular binding immunoglobulin protein (BiP) would protect the hTNFtg mouse from both inflammatory arthritis as well as extensive systemic bone loss and whether BiP had direct antiosteoclast properties in vitro. METHODS: hTNFtg mice received a single intraperitoneal administration of BiP at onset of arthritis. Clinical disease parameters were measured weekly. Bone analysis was performed by microcomputed tomography and histomorphometry. Mouse bone marrow macrophage and human peripheral blood monocyte precursors were used to study the direct effect of BiP on osteoclast differentiation and function in vitro. Monocyte and osteoclast signaling was analyzed by Western blotting, flow cytometry, and imaging flow cytometry. RESULTS: BiP-treated mice showed reduced inflammation and cartilage destruction, and histomorphometric analysis revealed a decrease in osteoclast number with protection from systemic bone loss. Abrogation of osteoclast function was also observed in an ex vivo murine calvarial model. BiP inhibited differentiation of osteoclast precursors and prevented bone resorption by mature osteoclasts in vitro. BiP also induced downregulation of CD115/c-Fms and Receptor Activator of NF-κB (RANK) messenger RNA and protein, causing reduced phosphorylation of the p38 mitogen-activated protein kinases, extracellular signal-regulated kinases 1/2 and p38, with suppression of essential osteoclast transcription factors, c-Fos and NFATc1. BiP directly inhibited TNF-α- or Receptor Activator of NF-κB Ligand (RANKL)-induced NF-κB nuclear translocation in THP-1 monocytic cells and preosteoclasts by the canonical and noncanonical pathways. CONCLUSION: BiP combines an anti-inflammatory function with antiosteoclast activity, which establishes it as a potential novel therapeutic for inflammatory disorders associated with bone loss.

8.
Acta Biomater ; 89: 73-83, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30844569

RESUMO

Tissue engineering strategies often aim to direct tissue formation by mimicking conditions progenitor cells experience within native tissues. For example, to create cartilage in vitro, researchers often aim to replicate the biochemical and mechanical milieu cells experience during cartilage formation in the developing limb bud. This includes stimulating progenitors with TGF-ß1/3, culturing under hypoxic conditions, and regulating mechanosensory pathways using biomaterials that control substrate stiffness and/or cell shape. However, as progenitors differentiate down the chondrogenic lineage, the pathways that regulate their responses to mechanotransduction, hypoxia and TGF-ß may not act independently, but rather also impact one another, influencing overall cell response. Here, to better understand hypoxia's influence on mechanoregulatory-mediated chondrogenesis, we cultured human marrow stromal/mesenchymal stem cells (hMSC) on soft (0.167 kPa) or stiff (49.6 kPa) polyacrylamide hydrogels in chondrogenic medium containing TGF-ß3. We then compared cell morphology, phosphorylated myosin light chain 2 staining, and chondrogenic gene expression under normoxic and hypoxic conditions, in the presence and absence of pharmacological inhibition of cytoskeletal tension. We show that on soft compared to stiff substrates, hypoxia prompts hMSC to adopt more spread morphologies, assemble in compact mesenchymal condensation-like colonies, and upregulate NCAM expression, and that inhibition of cytoskeletal tension negates hypoxia-mediated upregulation of molecular markers of chondrogenesis, including COL2A1 and SOX9. Taken together, our findings support a role for hypoxia in regulating hMSC morphology, cytoskeletal tension and chondrogenesis, and that hypoxia's effects are modulated, at least in part, by mechanosensitive pathways. Our insights into how hypoxia impacts mechanoregulation of chondrogenesis in hMSC may improve strategies to develop tissue engineered cartilage. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies often aim to drive progenitor cell differentiation by replicating the local environment of the native tissue, including by regulating oxygen concentration and mechanical stiffness. However, the pathways that regulate cellular responses to mechanotransduction and hypoxia may not act independently, but rather also impact one another. Here, we show that on soft, but not stiff surfaces, hypoxia impacts human MSC (hMSC) morphology and colony formation, and inhibition of cytoskeletal tension negates the hypoxia-mediated upregulation of molecular markers of chondrogenesis. These observations suggest that hypoxia's effects during hMSC chondrogenesis are modulated, at least in part, by mechanosensitive pathways, and may impact strategies to develop scaffolds for cartilage tissue engineering, as hypoxia's chondrogenic effects may be enhanced on soft materials.


Assuntos
Resinas Acrílicas , Diferenciação Celular , Condrogênese , Hidrogéis , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Hipóxia Celular , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Estresse Mecânico , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
10.
Nat Commun ; 9(1): 4049, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282987

RESUMO

Modifiable hydrogels have revealed tremendous insight into how physical characteristics of cells' 3D environment drive stem cell lineage specification. However, in native tissues, cells do not passively receive signals from their niche. Instead they actively probe and modify their pericellular space to suit their needs, yet the dynamics of cells' reciprocal interactions with their pericellular environment when encapsulated within hydrogels remains relatively unexplored. Here, we show that human bone marrow stromal cells (hMSC) encapsulated within hyaluronic acid-based hydrogels modify their surroundings by synthesizing, secreting and arranging proteins pericellularly or by degrading the hydrogel. hMSC's interactions with this local environment have a role in regulating hMSC fate, with a secreted proteinaceous pericellular matrix associated with adipogenesis, and degradation with osteogenesis. Our observations suggest that hMSC participate in a bi-directional interplay between the properties of their 3D milieu and their own secreted pericellular matrix, and that this combination of interactions drives fate.


Assuntos
Comunicação Celular , Linhagem da Célula , Junções Célula-Matriz/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Amidas/farmacologia , Comunicação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Junções Célula-Matriz/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Paclitaxel/farmacologia , Piridinas/farmacologia , Células-Tronco/efeitos dos fármacos
11.
Mol Cell Endocrinol ; 477: 140-147, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29928929

RESUMO

The osteoporosis-resistant nature of skull bones implies inherent differences exist between their cellular responses and those of other osteoporosis-susceptible skeletal sites. Phenotypic differences in calvarial and femoral osteoblastic responses to induction of osteogenesis, mechanical loading, estrogen, growth factor and cytokine stimulation were investigated. Primary rat calvarial and femoral adult male osteoblasts were cultured and osteoblastic mineralisation and maturation determined using Alizarin Red staining and expression of osteogenic marker genes assessed. Expression of known mechanically-responsive genes was compared between sites following loading of scaffold-seeded cells in a bioreactor. Cell proliferation and differentiation following growth factor and estrogen stimulation were also compared. Finally expression of estrogen receptors and associated genes during osteogenic differentiation were investigated. Calvarial osteoblasts exhibited delayed maturation (45d. vs 21d.) and produced less mineralised matrix than femoral osteoblasts when osteogenically induced. PDGF-BB and FGF2 both caused a selective increase in proliferation and decrease in osteoblastic differentiation of femoral osteoblasts. Mechanical stimulation resulted in the induction of the expression of Ccl2 and Anx2a selectively in femoral osteoblasts, but remained unchanged in calvarial cells. Estrogen receptor beta expression was selectively upregulated 2-fold in calvarial osteoblasts. Most interestingly, the estrogen responsive transcriptional repressor RERG was constitutively expressed at 1000-fold greater levels in calvarial compared with femoral osteoblasts. RERG expression in calvarial osteoblasts was down regulated during osteogenic induction whereas upregulation occurred in femoral osteoblasts. Bone cells of the skull are inherently different to those of the femur, and respond differentially to a range of stimuli. These site-specific differences may have important relevance in the development of strategies to tackle metabolic bone disorders.


Assuntos
Regulação da Expressão Gênica , Osteoblastos/citologia , Osteoblastos/metabolismo , Receptores de Estrogênio/metabolismo , Estresse Mecânico , Fosfatase Alcalina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Proteínas Correpressoras/metabolismo , Estrogênios/farmacologia , Fêmur/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Fenótipo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Crânio/citologia
12.
Nat Commun ; 9(1): 2150, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858576

RESUMO

The transcription factor FOS has long been implicated in the pathogenesis of bone tumours, following the discovery that the viral homologue, v-fos, caused osteosarcoma in laboratory mice. However, mutations of FOS have not been found in human bone-forming tumours. Here, we report recurrent rearrangement of FOS and its paralogue, FOSB, in the most common benign tumours of bone, osteoblastoma and osteoid osteoma. Combining whole-genome DNA and RNA sequences, we find rearrangement of FOS in five tumours and of FOSB in one tumour. Extending our findings into a cohort of 55 cases, using FISH and immunohistochemistry, provide evidence of ubiquitous mutation of FOS or FOSB in osteoblastoma and osteoid osteoma. Overall, our findings reveal a human bone tumour defined by mutations of FOS and FOSB.


Assuntos
Neoplasias Ósseas/genética , Osteoblastoma/genética , Proteínas Proto-Oncogênicas c-fos/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/metabolismo , Criança , Pré-Escolar , Feminino , Rearranjo Gênico , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Osteoblastoma/diagnóstico , Osteoblastoma/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sequenciamento Completo do Genoma/métodos , Adulto Jovem
13.
Stem Cells ; 36(9): 1380-1392, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29726060

RESUMO

The transcriptional profile induced by hypoxia plays important roles in the chondrogenic differentiation of marrow stromal/stem cells (MSC) and is mediated by the hypoxia inducible factor (HIF) complex. However, various compounds can also stabilize HIF's oxygen-responsive element, HIF-1α, at normoxia and mimic many hypoxia-induced cellular responses. Such compounds may prove efficacious in cartilage tissue engineering, where microenvironmental cues may mediate functional tissue formation. Here, we investigated three HIF-stabilizing compounds, which each have distinct mechanisms of action, to understand how they differentially influenced the chondrogenesis of human bone marrow-derived MSC (hBM-MSC) in vitro. hBM-MSCs were chondrogenically-induced in transforming growth factor-ß3-containing media in the presence of HIF-stabilizing compounds. HIF-1α stabilization was assessed by HIF-1α immunofluorescence staining, expression of HIF target and articular chondrocyte specific genes by quantitative polymerase chain reaction, and cartilage-like extracellular matrix production by immunofluorescence and histochemical staining. We demonstrate that all three compounds induced similar levels of HIF-1α nuclear localization. However, while the 2-oxoglutarate analog dimethyloxalylglycine (DMOG) promoted upregulation of a selection of HIF target genes, desferrioxamine (DFX) and cobalt chloride (CoCl2 ), compounds that chelate or compete with divalent iron (Fe2+ ), respectively, did not. Moreover, DMOG induced a more chondrogenic transcriptional profile, which was abolished by Acriflavine, an inhibitor of HIF-1α-HIF-ß binding, while the chondrogenic effects of DFX and CoCl2 were more limited. Together, these data suggest that HIF-1α function during hBM-MSC chondrogenesis may be regulated by mechanisms with a greater dependence on 2-oxoglutarate than Fe2+ availability. These results may have important implications for understanding cartilage disease and developing targeted therapies for cartilage repair. Stem Cells 2018;36:1380-1392.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Células-Tronco Mesenquimais/efeitos dos fármacos , Aminoácidos Dicarboxílicos/farmacologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Criança , Condrogênese/efeitos dos fármacos , Cobalto/farmacologia , Desferroxamina/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
14.
J Pathol ; 239(4): 438-49, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27172275

RESUMO

Osteosarcoma (OS) is the most prevalent osseous tumour in children and adolescents and, within this, lung metastases remain one of the factors associated with a dismal prognosis. At present, the genetic determinants driving pulmonary metastasis are poorly understood. We adopted a novel strategy using robust filtering analysis of transcriptomic profiling in tumour osteoblastic cell populations derived from human chemo-naive primary tumours displaying extreme phenotypes (indolent versus metastatic) to uncover predictors associated with metastasis and poor survival. We identified MGP, encoding matrix-Gla protein (MGP), a non-collagenous matrix protein previously associated with the inhibition of arterial calcification. Using different orthotopic models, we found that ectopic expression of Mgp in murine and human OS cells led to a marked increase in lung metastasis. This effect was independent of the carboxylation of glutamic acid residues required for its physiological role. Abrogation of Mgp prevented lung metastatic activity, an effect that was rescued by forced expression. Mgp levels dramatically altered endothelial adhesion, trans-endothelial migration in vitro and tumour cell extravasation ability in vivo. Furthermore, Mgp modulated metalloproteinase activities and TGFß-induced Smad2/3 phosphorylation. In the clinical setting, OS patients who developed lung metastases had high serum levels of MGP at diagnosis. Thus, MGP represents a novel adverse prognostic factor and a potential therapeutic target in OS. Microarray datasets may be found at: http://bioinfow.dep.usal.es/osteosarcoma/ Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias Ósseas/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neoplasias Pulmonares/secundário , Osteossarcoma/secundário , Animais , Neoplasias Ósseas/metabolismo , Movimento Celular/fisiologia , Humanos , Neoplasias Pulmonares/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Nus , Osteossarcoma/metabolismo , Fosforilação , Prognóstico , Proteínas Smad/metabolismo , Proteína de Matriz Gla
15.
Tissue Eng Part A ; 22(9-10): 707-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27036931

RESUMO

Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFß) signaling as a potential pathway for pharmacological modulation in vivo. We demonstrate that inhibition of TGFß signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFß signaling by producing higher levels of BMP2 that upregulates inhibitory Smad6 expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.


Assuntos
Benzamidas/farmacologia , Regeneração Óssea/efeitos dos fármacos , Dioxóis/farmacologia , Osteoblastos , Transdução de Sinais/efeitos dos fármacos , Crânio , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Proteína Morfogenética Óssea 2/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Crânio/lesões , Crânio/metabolismo , Crânio/patologia , Proteína Smad6/biossíntese , Fator de Crescimento Transformador beta/metabolismo
16.
Development ; 140(12): 2597-610, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23715552

RESUMO

Osteoarthritis primarily affects the articular cartilage of synovial joints. Cell and/or cartilage replacement is a promising therapy, provided there is access to appropriate tissue and sufficient numbers of articular chondrocytes. Embryonic stem cells (ESCs) represent a potentially unlimited source of chondrocytes and tissues as they can generate a broad spectrum of cell types under appropriate conditions in vitro. Here, we demonstrate that mouse ESC-derived chondrogenic mesoderm arises from a Flk-1(-)/Pdgfrα(+) (F(-)P(+)) population that emerges in a defined temporal pattern following the development of an early cardiogenic F(-)P(+) population. Specification of the late-arising F(-)P(+) population with BMP4 generated a highly enriched population of chondrocytes expressing genes associated with growth plate hypertrophic chondrocytes. By contrast, specification with Gdf5, together with inhibition of hedgehog and BMP signaling pathways, generated a population of non-hypertrophic chondrocytes that displayed properties of articular chondrocytes. The two chondrocyte populations retained their hypertrophic and non-hypertrophic properties when induced to generate spatially organized proteoglycan-rich cartilage-like tissue in vitro. Transplantation of either type of chondrocyte, or tissue generated from them, into immunodeficient recipients resulted in the development of cartilage tissue and bone within an 8-week period. Significant ossification was not observed when the tissue was transplanted into osteoblast-depleted mice or into diffusion chambers that prevent vascularization. Thus, through stage-specific manipulation of appropriate signaling pathways it is possible to efficiently and reproducibly derive hypertrophic and non-hypertrophic chondrocyte populations from mouse ESCs that are able to generate distinct cartilage-like tissue in vitro and maintain a cartilage tissue phenotype within an avascular and/or osteoblast-free niche in vivo.


Assuntos
Cartilagem Articular/citologia , Condrócitos/citologia , Condrogênese , Células-Tronco Embrionárias/citologia , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Cartilagem Articular/metabolismo , Diferenciação Celular , Linhagem da Célula , Condrócitos/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/transplante , Feminino , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Hipertrofia/metabolismo , Imuno-Histoquímica , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteogênese , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Fatores de Tempo
17.
Am J Pathol ; 179(2): 1041-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21801875

RESUMO

Podoplanin is a type-I transmembrane sialomucin-like protein, which is expressed in a wide range of cell types and is involved in platelet aggregation and tumor metastasis. Here, we investigated the function, regulation, and expression of podoplanin in osteosarcoma. Podoplanin expression was observed in three osteosarcoma cell lines (MG-63, HOS, and U-2 OS) with platelet aggregation-inducing ability, which was blocked by podoplanin small-interfering RNA or a neutralizing antibody. Overexpression of podoplanin in nonmetastatic Dunn osteosarcoma cells promoted cell migration without attenuating cell proliferation. Both podoplanin and TGF-ß1 were up-regulated by c-Fos induction in MC3T3-E1 osteoblastic cells, and were highly expressed in c-Fos transgenic mouse osteosarcomas and c-Fos-transformed osteosarcoma cell lines. Immunohistochemistry of human osteosarcoma tissue microarrays (n = 133) showed staining of tumor cells embedded in an excess of irregular neoplastic bone matrix in 100% of tumors undergoing so-called "normalization/maturation." Podoplanin was also expressed in osteosarcoma subtypes, with 65% of osteoblastic, 100% of chondroblastic, and 79% of fibroblastic tumors. CD44 and pERM immunohistochemistry showed coexpression with podoplanin in both mouse and human osteosarcoma. Podoplanin expression was significantly higher in metastatic osteosarcomas (n = 6) than in primary osteosarcomas (n = 10). Our data suggest that podoplanin, which is not expressed in normal osteoblasts but in osteocytes, is aberrantly expressed in transformed osteoblasts and in osteosarcoma, and is under AP-1 transcriptional control. Thus podoplanin is a candidate molecule for therapeutic targeting.


Assuntos
Glicoproteínas de Membrana/metabolismo , Osteossarcoma/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Agregação Plaquetária , Interferência de RNA , Fator de Crescimento Transformador beta1/biossíntese
18.
Tumour Biol ; 32(3): 611-22, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21360024

RESUMO

S100A4, a 10-12 kDa calcium-binding protein, plays functional roles in tumor progression and metastasis. The present study aimed to investigate the function of S100A4 in osteosarcoma (OS) metastasis, using a loss-of-function approach. Our previous expression profiling analysis revealed that S100a4 was preferentially expressed in the highly metastatic mouse OS cell line, LM8. Introducing a short hairpin ribonucleic acid (shRNA) targeting S100a4 using a newly established vector containing insulators and transposons, we established stable LM8 subclones with almost 100% silencing of endogenous S100a4 protein. These transfectants showed a significant suppression of cell migration in vitro as well as a marked reduction in their ability to colonize the lung and form pulmonary metastases in vivo following intravenous inoculation, whereas there was no significant change in cell proliferation or cell attachment to fibronectin, laminin, and type I collagen. Expression and phosphorylation of ezrin, an emerging OS metastasis-associated factor, and expression of MMPs, remained the same in S100a4-shRNA clones. In 61 human OS, immunohistochemical analysis showed that lesional cells in 85.2% samples expressed S100A4 protein, and the immunoreactivity was primarily cytoplasmic, but it also showed occasional nuclear localization. Chondroblastic and osteoblastic OS subtypes expressed more S100A4 than fibroblastic subtypes. The causative role of S100A4 in OS lung metastasis shown in the murine xenograft model, together with the high proportion of primary human OS expressing S100A4, suggest that S100A4 protein represents an important potential target for future OS therapy.


Assuntos
Neoplasias Ósseas/patologia , Movimento Celular , Osteossarcoma/patologia , Proteínas S100/fisiologia , Animais , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/secundário , Camundongos , RNA Mensageiro/análise , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/análise , Proteínas S100/genética
19.
Proc Natl Acad Sci U S A ; 107(29): 12913-8, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20616007

RESUMO

The neighbor of Brca1 gene (Nbr1) functions as an autophagy receptor involved in targeting ubiquitinated proteins for degradation. It also has a dual role as a scaffold protein to regulate growth-factor receptor and downstream signaling pathways. We show that genetic truncation of murine Nbr1 leads to an age-dependent increase in bone mass and bone mineral density through increased osteoblast differentiation and activity. At 6 mo of age, despite normal body size, homozygous mutant animals (Nbr1(tr/tr)) have approximately 50% more bone than littermate controls. Truncated Nbr1 (trNbr1) co-localizes with p62, a structurally similar interacting scaffold protein, and the autophagosome marker LC3 in osteoblasts, but unlike the full-length protein, trNbr1 fails to complex with activated p38 MAPK. Nbr1(tr/tr) osteoblasts and osteoclasts show increased activation of p38 MAPK, and significantly, pharmacological inhibition of the p38 MAPK pathway in vitro abrogates the increased osteoblast differentiation of Nbr1(tr/tr) cells. Nbr1 truncation also leads to increased p62 protein expression. We show a role for Nbr1 in bone remodeling, where loss of function leads to perturbation of p62 levels and hyperactivation of p38 MAPK that favors osteoblastogenesis.


Assuntos
Osteoblastos/enzimologia , Osteogênese , Proteínas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Animais Recém-Nascidos , Densidade Óssea , Células COS , Diferenciação Celular , Chlorocebus aethiops , Vesículas Citoplasmáticas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mutantes/metabolismo , Tamanho do Órgão , Osteoblastos/citologia , Estabilidade Proteica , Transporte Proteico , Proteínas/metabolismo , Frações Subcelulares/metabolismo , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo
20.
Blood ; 115(14): 2769-76, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20065292

RESUMO

The directed differentiation of human pluripotent stem cells offers the unique opportunity to generate a broad spectrum of human cell types and tissues for transplantation, drug discovery, and studying disease mechanisms. Here, we report the stepwise generation of bone-resorbing osteoclasts from human embryonic and induced pluripotent stem cells. Generation of a primitive streak-like population in embryoid bodies, followed by specification to hematopoiesis and myelopoiesis by vascular endothelial growth factor and hematopoietic cytokines in serum-free media, yielded a precursor population enriched for cells expressing the monocyte-macrophage lineage markers CD14, CD18, CD11b, and CD115. When plated in monolayer culture in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor-kappaB ligand (RANKL), these precursors formed large, multinucleated osteoclasts that expressed tartrate-resistant acid phosphatase and were capable of resorption. No tartrate-resistant acid phosphatase-positive multinucleated cells or resorption pits were observed in the absence of RANKL. Molecular analyses confirmed the expression of the osteoclast marker genes NFATc1, cathepsin K, and calcitonin receptor in a RANKL-dependent manner, and confocal microscopy demonstrated the coexpression of the alphavbeta3 integrin, cathepsin K and F-actin rings characteristic of active osteoclasts. Generating hematopoietic and osteoclast populations from human embryonic and induced pluripotent stem cells will be invaluable for understanding embryonic bone development and postnatal bone disease.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Osteoclastos/metabolismo , Antígenos de Diferenciação/biossíntese , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Mielopoese/efeitos dos fármacos , Mielopoese/fisiologia , Osteoclastos/citologia , Ligante RANK/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA