Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 272: 125742, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367399

RESUMO

Current sample preparation strategies for nanomaterials (NMs) analysis in soils by means single particle inductively coupled plasma mass spectrometry have significant constrains in terms of accuracy, sample throughput and applicability (i.e., type of NMs and soils). In this work, strengths and weakness of microwave assisted extraction (MAE) for NMs characterization in soils were systematically investigated. To this end, different extractants were tested (ultrapure water; NaOH, NH4OH, sodium citrate and tetrasodium pyrophosphate) and MAE operating conditions were optimized by means of design of experiments. Next, the developed method was applied to different type of metallic(oid) nanoparticles (Se-, Ag-, Pt- and AuNPs) and soils (alkaline, acid, sandy, clayey, SL36, loam ERMCC141; sludge amended ERM483). Results show that Pt- and AuNPs are preserved and quantitatively extracted from soils in 6 min (12 cycles of 30 s each) inside an 800 W oven by using 20 mL of 0.1 M NaOH solution. This methodology is applicable to soils showing a wide range of physicochemical properties except for clay rich samples. If clay soil fraction is significant (>15%), NMs are efficiently retained in the soil thus giving rise to poor recoveries (<10%). The analysis of labile NMs such as Se- and AgNPs is not feasible by means this approach since extraction conditions favors dissolution. Finally, when compared to current extraction methodologies (e.g., ultrasound, cloud point extraction, etc.), MAE affords better or equivalent accuracies and precision as well as higher sample throughput due to treatment speed and the possibility to work with several samples simultaneously.

2.
Mar Drugs ; 21(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36827113

RESUMO

Haloferax mediterranei has revealed a high bioremediation potential for several inorganic anions (e.g., nitrates and nitrites) and metals from hypersaline waters and brines. However, it is unclear, to date, whether this microorganism allows Cd (II) bioremediation. Consequently, the main objective of this work was to assess the Cd (II) bioremediation potential of Hfx. mediterranei R4. To this end, Hfx. mediterranei cell growth rate and metal bioaccumulation were investigated using different culture media (complex, CM, and defined medium, DM) containing Cd (II) up to 1 mM. In addition, the elemental profile of the biomass (i.e., Al, Ba, Ca, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Sr and Zn) has also been monitored to gain insight into the metabolic processes that may be taking place at the intracellular level for Cd (II) removal. Because of the formation of CdS precipitate, CM is not a suitable culture media for evaluating Cd bioremediation since metal concentration could not be appropriately controlled. When operating in DM, it was observed that the cell doubling time increases three times in the presence of Cd (II). Hfx. mediterranei can bioaccumulate Cd, showing the highest significant accumulation at concentrations of 0.4 mM (108 ± 12 mg Cd/g dry tissue). Finally, the presence of Cd (II) affects the content of K, Mg, Mn and Zn in the biomass, by increasing K levels up to 27 ± 18% and Mn up to 310 ± 140% and reducing Mg levels up to 55 ± 36% and Zn up to 30 ± 4%. These results suggest that different mechanisms are involved in Cd (II) tolerance by Hfx. mediterranei, resulting in increasing the cell concentration of stress-tolerant elements in the biomass (K and Mn), while lowering the concentration of elements which Cd (II) competes with (Mg and Zn), and that all affects the physiological response of the organism by decreasing its growth rate.


Assuntos
Cádmio , Haloferax mediterranei , Cádmio/metabolismo , Haloferax mediterranei/metabolismo , Metais/metabolismo , Nitritos/metabolismo , Meios de Cultura/metabolismo
3.
Talanta ; 252: 123818, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029682

RESUMO

Single particle inductively coupled plasma mass spectrometry (spICP-MS) has been explored for the determination of metallic nanoparticles (NPs) in air. Different extraction strategies (i.e., direct immersion, hard cap espresso, ultrasound-assisted and microwave-assisted extraction) and extracting solvents (i.e., citric acid, trisodium citrate, potassium nitrate, sodium nitrate, thiourea, disodium pyrophosphate and ammonium hydroxide) were investigated for platinum and gold NPs recovery from glass and microquartz fiber filters with a nominal size cut-off of 300 nm. Results show that metallic NPs are preserved and quantitatively extracted from the filter in 4 min inside an 800 W microwave oven by using 40 mL of a 2.0% w w-1 NH4OH solution. For the remaining extraction procedures, either incomplete recoveries or NPs degradation occur. As regards the influence of filter material, microquartz fiber affords better NPs capturing performance than glass fiber ones, enabling the quantification of NPs with diameters above 28 nm. This methodology has been successfully applied to determine PtNPs in filters from environmental monitoring stations and to gain insight into NPs transport through ICP-MS sample introduction system. Care should be taken during spICP-MS calibration since biased results might be obtained due to differences on NPs transport efficiency between standards and samples.


Assuntos
Filtros de Ar , Nanopartículas Metálicas , Nanopartículas , Tamanho da Partícula , Espectrometria de Massas/métodos , Nanopartículas Metálicas/química , Ouro/química , Nanopartículas/química
4.
Anal Chim Acta ; 1018: 7-15, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29605136

RESUMO

Lanthanide polymer-labelled antibodies were investigated to improve the analytical figures of merit of homogeneous immunoassays with inductively coupled plasma mass spectrometry (ICP-MS) detection for multiplexed biomarker analysis in human serum samples. Specific monoclonal antibodies against four cancer biomarkers (CEA, sErbB2, CA 15.3 and CA 125) were labelled with different polymer-based lanthanide group to increase the number of metal labels per binding site. After the immunoreaction of the biomarkers with the specific antibodies, antigen-antibody complexes were separated by size-exclusion chromatography followed by ICP-MS detection. The polymer label could be loaded with 30-times more atoms of the lanthanide that the lanthanide-DOTA complex traditionally used for this purpose elsewhere [1] which resulted in a 10-fold improvement in both sensitivity and detection limits. Analytical figures of merit obtained with the lanthanide polymer labelling strategy make the detection of the biomarkers feasible below the threshold reference values used in clinical analysis. This labelling method was successfully validated by analyzing a control human serum spiked with the four biomarkers at three different concentration levels. For all the biomarkers studied, the recovery values ranged from 95% to 110% whereas inter-assay and intra-assay precision were lower than 8%. Results obtained with this approach were equivalent to those obtained by heterogenous-based immunoassays based on the detection by electro-chemiluminescence or ELISA. However, the method developed offers better analytical figures of merit using a smaller amount of sample.


Assuntos
Biomarcadores Tumorais/sangue , Elementos da Série dos Lantanídeos/química , Polímeros/química , Anticorpos Monoclonais/imunologia , Biomarcadores Tumorais/imunologia , Cromatografia em Gel , Humanos , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA