Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 14(1): 33, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238293

RESUMO

GATAD2B (GATA zinc finger domain containing 2B) variants are associated with the neurodevelopmental syndrome GAND, characterized by intellectual disability (ID), infantile hypotonia, apraxia of speech, epilepsy, macrocephaly and distinct facial features. GATAD2B encodes for a subunit of the Nucleosome Remodeling and Histone Deacetylase (NuRD) complex. NuRD controls transcriptional programs critical for proper neurodevelopment by coupling histone deacetylase with ATP-dependent chromatin remodeling activity. To study mechanisms of pathogenesis for GAND, we characterized a mouse model harboring an inactivating mutation in Gatad2b. Homozygous Gatad2b mutants die perinatally, while haploinsufficient Gatad2b mice exhibit behavioral abnormalities resembling the clinical features of GAND patients. We also observed abnormal cortical patterning, and cellular proportions and cell-specific alterations in the developmental transcriptome in these mice. scRNAseq of embryonic cortex indicated misexpression of genes key for corticogenesis and associated with neurodevelopmental syndromes such as Bcl11b, Nfia and H3f3b and Sox5. These data suggest a crucial role for Gatad2b in brain development.


Assuntos
Deficiência Intelectual , Proteínas Repressoras , Humanos , Animais , Camundongos , Fatores de Transcrição GATA/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Fatores de Transcrição/genética , Histona Desacetilases , Síndrome , Proteínas Supressoras de Tumor
2.
Neurobiol Aging ; 131: 182-195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37677864

RESUMO

A missense variant in the tetratricopeptide repeat domain 3 (TTC3) gene (rs377155188, p.S1038C, NM_003316.4:c 0.3113C>G) was found to segregate with disease in a multigenerational family with late-onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing, and the resulting isogenic pair of iPSC lines was differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3-dimensional morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Doença de Alzheimer/genética , Neurônios , Citoesqueleto de Actina , Transtornos de Início Tardio , Prosencéfalo , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases
3.
Mol Cancer Ther ; 22(11): 1280-1289, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527526

RESUMO

Neurofibromatosis Type 2 (NF2) is a tumor predisposition syndrome caused by germline inactivating mutations in the NF2 gene encoding the merlin tumor suppressor. Patients develop multiple benign tumor types in the nervous system including bilateral vestibular schwannomas (VS). Standard treatments include surgery and radiation therapy, which may lead to loss of hearing, impaired facial nerve function, and other complications. Kinase inhibitor monotherapies have been evaluated clinically for NF2 patients with limited success, and more effective nonsurgical therapies are urgently needed. Schwannoma model cells treated with PI3K inhibitors upregulate activity of the focal adhesion kinase (FAK) family as a compensatory survival pathway. We screened combinations of 13 clinically relevant PI3K and FAK inhibitors using human isogenic normal and merlin-deficient Schwann cell lines. The most efficacious combination was PI3K/mTOR inhibitor omipalisib with SRC/FAK inhibitor dasatinib. Sub-GI50 doses of the single drugs blocked phosphorylation of their major target proteins. The combination was superior to either single agent in promoting a G1 cell-cycle arrest and produced a 44% decrease in tumor growth over a 2-week period in a pilot orthotopic allograft model. Evaluation of single and combination drugs in six human primary VS cell models revealed the combination was superior to the monotherapies in 3 of 6 VS samples, highlighting inter-tumor variability between patients consistent with observations from clinical trials with other molecular targeted agents. Dasatinib alone performed as well as the combination in the remaining three samples. Preclinically validated combination therapies hold promise for NF2 patients and warrants further study in clinical trials.


Assuntos
Antineoplásicos , Neurilemoma , Neurofibromatose 2 , Humanos , Neurofibromatose 2/tratamento farmacológico , Neurofibromatose 2/genética , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Dasatinibe/farmacologia , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinase/uso terapêutico , Neurilemoma/tratamento farmacológico , Neurilemoma/genética , Antineoplásicos/farmacologia , Proliferação de Células
4.
Exp Lung Res ; 49(1): 152-164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37584484

RESUMO

Purpose: Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that GHRH receptor (GHRH-R) in alveolar type 2 (AT2) cells could modulate pro-inflammatory and possibly subsequent pro-fibrotic effects of lipopolysaccharide (LPS) or cytokines, such that AT2 cells could participate in lung inflammation and fibrosis. Methods: We used human alveolar type 2 (iAT2) epithelial cells derived from induced pluripotent stem cells (iPSC) to investigate how GHRH-R modulates gene and protein expression. We tested iAT2 cells' gene expression in response to LPS or cytokines, seeking whether these mechanisms caused endogenous production of pro-inflammatory molecules or mesenchymal markers. Quantitative real-time PCR (RT-PCR) and Western blotting were used to investigate differential expression of epithelial and mesenchymal markers. Result: Incubation of iAT2 cells with LPS increased expression of IL1-ß and TNF-α in addition to mesenchymal genes, including ACTA2, FN1 and COL1A1. Alveolar epithelial cell gene expression due to LPS was significantly inhibited by GHRH-R peptide antagonist MIA-602. Incubation of iAT2 cells with cytokines like those in fibrotic lungs similarly increased expression of genes for IL1-ß, TNF-α, TGFß-1, Wnt5a, smooth muscle actin, fibronectin and collagen. Expression of mesenchymal proteins, such as N-cadherin and vimentin, were also elevated after prolonged exposure to cytokines, confirming epithelial production of pro-inflammatory molecules as an important mechanism that might lead to subsequent fibrosis. Conclusion: iAT2 cells clearly expressed the GHRH-R. Exposure to LPS or cytokines increased iAT2 cell production of pro-inflammatory factors. GHRH-R antagonist MIA-602 inhibited pro-inflammatory gene expression, implicating iAT2 cell GHRH-R signaling in lung inflammation and potentially in fibrosis.


Assuntos
Pneumonia , Fibrose Pulmonar , Humanos , Células Epiteliais Alveolares/metabolismo , Fator de Necrose Tumoral alfa , Lipopolissacarídeos/farmacologia , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Inflamação , Citocinas
5.
Cells ; 12(10)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37408255

RESUMO

Osteoarthritis (OA) is the most common cause of disability worldwide among the elderly. Alarmingly, the incidence of OA in individuals less than 40 years of age is rising, likely due to the increase in obesity and post-traumatic osteoarthritis (PTOA). In recent years, due to a better understanding of the underlying pathophysiology of OA, several potential therapeutic approaches targeting specific molecular pathways have been identified. In particular, the role of inflammation and the immune system has been increasingly recognized as important in a variety of musculoskeletal diseases, including OA. Similarly, higher levels of host cellular senescence, characterized by cessation of cell division and the secretion of a senescence-associated secretory phenotype (SASP) within the local tissue microenvironments, have also been linked to OA and its progression. New advances in the field, including stem cell therapies and senolytics, are emerging with the goal of slowing disease progression. Mesenchymal stem/stromal cells (MSCs) are a subset of multipotent adult stem cells that have demonstrated the potential to modulate unchecked inflammation, reverse fibrosis, attenuate pain, and potentially treat patients with OA. Numerous studies have demonstrated the potential of MSC extracellular vesicles (EVs) as cell-free treatments that comply with FDA regulations. EVs, including exosomes and microvesicles, are released by numerous cell types and are increasingly recognized as playing a critical role in cell-cell communication in age-related diseases, including OA. Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of SASP. This article highlights the encouraging potential for MSC or MSC-derived products alone or in combination with senolytics to control patient symptoms and potentially mitigate the progression of OA. We will also explore the application of genomic principles to the study of OA and the potential for the discovery of OA phenotypes that can motivate more precise patient-driven treatments.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Senoterapia , Vesículas Extracelulares/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo
6.
Urology ; 175: 74-76, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858322

RESUMO

Congenital bilateral absence of the vas deferens (CBAVD) occurs in almost all men with cystic fibrosis. Prevailing theories on this pathophysiology relate to pathogenic mutations in the cystic fibrosis transmembrane regulator gene leading to agenesis or obliteration of vas deferens in utero. In this study, we present a case of two brothers with congenital anomalies of the vas deferens who were found to have carried a rare, heterozygous cystic fibrosis transmembrane regulator variant p.r347h without pulmonary or gastrointestinal signs or symptoms of cystic fibrosis .


Assuntos
Fibrose Cística , Ducto Deferente , Masculino , Humanos , Ducto Deferente/anormalidades , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/patologia , Sequenciamento do Exoma , Irmãos , Mutação
7.
J Invest Dermatol ; 143(3): 456-469.e8, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36174713

RESUMO

The prognosis for patients with metastatic melanoma (MM) involving distant organs is grim, and treatment resistance is potentiated by tumor-initiating cells (TICs) that thrive under hypoxia. MM cells, including TICs, express a unique glycome featuring i-linear poly-N-acetyllactosamines through the loss of I-branching enzyme, ß1,6 N-acetylglucosaminyltransferase 2. Whether hypoxia instructs MM TIC development by modulating the glycome signature remains unknown. In this study, we explored hypoxia-dependent alterations in MM glycome‒associated genes and found that ß1,6 N-acetylglucosaminyltransferase 2 was downregulated and a galectin (Gal)-8-ligand axis, involving both extracellular and cell-intrinsic Gal-8, was induced. Low ß1,6 N-acetylglucosaminyltransferase 2 levels correlated with poor patient outcomes, and patient serum samples were elevated for Gal-8. Depressed ß1,6 N-acetylglucosaminyltransferase 2 in MM cells upregulated TIC marker, NGFR/CD271, whereas loss of MM cell‒intrinsic Gal-8 markedly lowered NGFR and reduced TIC activity in vivo. Extracellular Gal-8 bound preferentially to i-linear poly-N-acetyllactosamines on N-glycans of the TIC marker and prometastatic molecule CD44, among other receptors, and activated prosurvival factor protein kinase B. This study reveals the importance of hypoxia governing the MM glycome by enforcing i-linear poly-N-acetyllactosamine and Gal-8 expression. This mechanistic investigation also uncovers glycome-dependent regulation of pro-MM factor, NGFR, implicating i-linear poly-N-acetyllactosamine and Gal-8 as biomarkers and therapeutic targets of MM.


Assuntos
Galectinas , N-Acetilglucosaminiltransferases , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Ligantes
8.
Oncotarget ; 13: 890-904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875610

RESUMO

Neurofibromatosis Type 2 (NF2) is a rare tumor disorder caused by pathogenic variants of the merlin tumor suppressor encoded by NF2. Patients develop vestibular schwannomas (VS), peripheral schwannomas, meningiomas, and ependymomas. There are no approved drug therapies for NF2. Previous work identified phosphoinositide-3 kinase (PI3K) as a druggable target. Here we screened PI3K pathway inhibitors for efficacy in reducing viability of human schwannoma cells. The lead compound, CUDC907, a dual histone deacetylase (HDAC)/PI3K inhibitor, was further evaluated for its effects on isolated and nerve-grafted schwannoma model cells, and primary VS cells. CUDC907 (3 nM IG50) reduced human merlin deficient Schwann cell (MD-SC) viability and was 5-100 fold selective for MD over WT-SCs. CUDC907 (10 nM) promoted cell cycle arrest and caspase-3/7 activation within 24 h in human MD-SCs. Western blots confirmed a dose-dependent increase in acetylated lysine and decreases in pAKT and YAP. CUDC907 decreased tumor growth rate by 44% in a 14-day treatment regimen, modulated phospho-target levels, and decreased YAP levels. In five primary VS, CUDC907 decreased viability, induced caspase-3/7 cleavage, and reduced YAP levels. Its efficacy correlated with basal phospho-HDAC2 levels. CUDC907 has cytotoxic activity in NF2 schwannoma models and primary VS cells and is a candidate for clinical trials.


Assuntos
Neurilemoma , Neurofibromatose 2 , Humanos , Apoptose , Caspase 3 , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases , Lisina , Neurilemoma/patologia , Neurofibromatose 2/tratamento farmacológico , Neurofibromatose 2/metabolismo , Neurofibromatose 2/patologia , Neurofibromina 2 , Fosfatidilinositol 3-Quinases , Fosfatidilinositóis/farmacologia , Fosfatidilinositóis/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase
9.
Blood ; 140(5): 491-503, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35476848

RESUMO

CD19-directed chimeric antigen receptor (CAR-19) T cells are groundbreaking immunotherapies approved for use against large B-cell lymphomas. Although host inflammatory and tumor microenvironmental markers associate with efficacy and resistance, the tumor-intrinsic alterations underlying these phenomena remain undefined. CD19 mutations associate with resistance but are uncommon, and most patients with relapsed disease retain expression of the wild-type receptor, implicating other genomic mechanisms. We therefore leveraged the comprehensive resolution of whole-genome sequencing to assess 51 tumor samples from 49 patients with CAR-19-treated large B-cell lymphoma. We found that the pretreatment presence of complex structural variants, APOBEC mutational signatures, and genomic damage from reactive oxygen species predict CAR-19 resistance. In addition, the recurrent 3p21.31 chromosomal deletion containing the RHOA tumor suppressor was strongly enriched in patients for whom CAR T-cell therapy failed. Pretreatment reduced expression or monoallelic loss of CD19 did not affect responses, suggesting CAR-19 therapy success and resistance are related to multiple mechanisms. Our study showed that tumor-intrinsic genomic alterations are key among the complex interplay of factors that underlie CAR-19 efficacy and resistance for large B-cell lymphomas.


Assuntos
Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Antígenos CD19 , Genômica , Humanos , Imunoterapia Adotiva , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Falha de Tratamento
10.
Urology ; 166: 76-78, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292292

RESUMO

Peyronie's Disease (PD) is estimated to occur in up to 13% of males and has been associated with Dupuytren's Disease (DD). We identified 3 men with PD/DD and hypothesized that there may be a genetic association between the 2 diseases. Blood samples were collected from the participants and sent for whole genome sequencing. A rare non-synonymous mutation in the ALMS1 gene was identified in 3 men. Interestingly, ALMS1 is associated with TGF-b, and aberrant fibrosis. This pilot study generates the hypothesis that mutations in ALMS1 may predispose patients to development of PD/DD.


Assuntos
Contratura de Dupuytren , Induração Peniana , Proteínas de Ciclo Celular/genética , Contratura de Dupuytren/genética , Humanos , Masculino , Mutação , Induração Peniana/genética , Projetos Piloto , Sequenciamento Completo do Genoma
11.
Clin Transl Immunology ; 10(7): e1310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257968

RESUMO

OBJECTIVES: Growth hormone-releasing hormone (GHRH) is a potent stimulator of growth hormone (GH) secretion from the pituitary gland. Although GHRH is essential for the growth of immune cells, the regulatory effects of its antagonist in granulomatous disease remain unknown. METHODS: Here, we report expression of GHRH receptor (R) in human tissue with sarcoidosis granuloma and demonstrate the anti-inflammatory effects of MIA602 (a GHRH antagonist) in two in vitro human granuloma models and an in vivo granuloma model using different methods including ELISA, immunohistochemistry, RNA-seq analysis and flow cytometry. RESULTS: MIA602 decreases the levels of IL-2, IL-2R, IL-7, IL-12, IL-17A and TNF-α in an in vitro granuloma model. Further, we show that the anti-inflammatory effect of MIA602 appears to be mediated by a reduction in CD45+CD68+ cells in granulomatous tissue and upregulation in PD-1 expression in macrophages. Analysis of the expression of proteins involved in the mitochondrial stage of apoptosis showed that MIA602 increases the levels of caspase-3, BCL-xL/BAK dimer and MCl-1/Bak dimer in the granuloma. These findings indicate that MIA602 may not induce apoptosis. CONCLUSIONS: Our findings further suggest that GHRH-R is potentially a clinical target for the treatment of granulomatous disease and that MIA602 may be used as a novel therapeutic agent for sarcoidosis.

12.
Am J Transplant ; 21(11): 3524-3537, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34008325

RESUMO

Mesenchymal stem cells (MSC) have been shown to be immunomodulatory, tissue regenerative, and graft promoting; however, several questions remain with regard to ideal MSC source and timing of administration. In this study, we utilized a rigorous preclinical model of allogeneic islet cell transplantation, incorporating reduced immune suppression and near to complete mismatch of major histocompatibility antigens between the diabetic cynomolgus monkey recipient and the islet donor, to evaluate both the graft promoting impact of MSC source, that is, derived from the islet recipient, the islet donor or an unrelated third party as well as the impact of timing. Co-transplant of MSC and islets on post-operative day 0, followed by additional IV MSC infusions in the first posttransplant month, resulted in prolongation of rejection free and overall islet survival and superior metabolic control for animals treated with recipient as compared to donor or third-party MSC. Immunological analyses demonstrated that infusion of MSC from either source did not prevent alloantibody formation to the islet or MSC donor; however, treatment with recipient MSC resulted in significant downregulation of memory T cells, decreased anti-donor T cell proliferation, and a trend toward increased Tregulatory:Tconventional ratios.


Assuntos
Transplante das Ilhotas Pancreáticas , Células-Tronco Mesenquimais , Aloenxertos , Animais , Macaca fascicularis , Transplante Homólogo
13.
Transl Vis Sci Technol ; 10(6): 34, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34043754

RESUMO

Purpose: Sebaceous carcinoma (SC) is a malignant eyelid tumor of the ocular adnexa that is primarily treated via surgical excision. Few therapies exist in advanced cases, and medical therapy is limited because of our incomplete understanding of SC biology. Herein, we describe a technique to culture human ocular adnexal SC for use as an in vitro model. Methods: Human ocular adnexal SC tumor cells were isolated from a patient undergoing orbital exenteration surgery and named Bascom Palmer 50 (BP50). They were cultured in Dulbecco's modified Eagle medium/nutrient mixture F-12 supplemented with 10% fetal bovine serum and antibiotics and were maintained at 37°C in humidified 5% CO2. The cells were characterized by immunohistochemistry, exome sequencing, and short tandem repeats analysis. In vitro drug screening against mitomycin-C (MMC) was performed using a cell viability assay. Results: BP50 grew past 40 passages with a doubling time of 52.3 hours. Immunocytochemical staining revealed expression of SC-associated markers adipophilin, epithelial membrane antigen, p53, and androgen receptor. Whole exome sequencing showed a significant carryover in somatic mutations between the tumor tissue and corresponding cell line, revealing genetic markers consistent with SC. MMC affected cell viability in a dose-dependent manner. Conclusions: BP50 displays characteristics of ocular adnexal SC and therefore may facilitate improved understanding of SC biology and the high throughput assessment of novel therapeutic compounds and new drug combinatorial approaches targeted for this disease. Translational Relevance: Drug screening with MMC against these cells shows in vitro evidence to support its continued clinical use in SC.


Assuntos
Adenocarcinoma Sebáceo , Neoplasias Oculares , Neoplasias Palpebrais , Neoplasias das Glândulas Sebáceas , Linhagem Celular , Neoplasias Oculares/tratamento farmacológico , Neoplasias Palpebrais/tratamento farmacológico , Humanos
14.
Cancer Discov ; 11(8): 2072-2093, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33757970

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by accumulation of neutral lipids and adipogenic transdifferentiation. We assessed adipokine expression in ccRCC and found that tumor tissues and patient plasma exhibit obesity-dependent elevations of the adipokine chemerin. Attenuation of chemerin by several approaches led to significant reduction in lipid deposition and impairment of tumor cell growth in vitro and in vivo. A multi-omics approach revealed that chemerin suppresses fatty acid oxidation, preventing ferroptosis, and maintains fatty acid levels that activate hypoxia-inducible factor 2α expression. The lipid coenzyme Q and mitochondrial complex IV, whose biogeneses are lipid-dependent, were found to be decreased after chemerin inhibition, contributing to lipid reactive oxygen species production. Monoclonal antibody targeting chemerin led to reduced lipid storage and diminished tumor growth, demonstrating translational potential of chemerin inhibition. Collectively, the results suggest that obesity and tumor cells contribute to ccRCC through the expression of chemerin, which is indispensable in ccRCC biology. SIGNIFICANCE: Identification of a hypoxia-inducible factor-dependent adipokine that prevents fatty acid oxidation and causes escape from ferroptosis highlights a critical metabolic dependency unique in the clear cell subtype of kidney cancer. Targeting lipid metabolism via inhibition of a soluble factor is a promising pharmacologic approach to expand therapeutic strategies for patients with ccRCC.See related commentary by Reznik et al., p. 1879.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Obesidade/complicações , Animais , Carcinoma de Células Renais/complicações , Linhagem Celular Tumoral/efeitos dos fármacos , Ácidos Graxos/metabolismo , Feminino , Ferroptose/efeitos dos fármacos , Humanos , Neoplasias Renais/complicações , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Nus
15.
Proc Natl Acad Sci U S A ; 117(20): 10876-10887, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32354994

RESUMO

We have described multipotent progenitor-like cells within the major pancreatic ducts (MPDs) of the human pancreas. They express PDX1, its surrogate surface marker P2RY1, and the bone morphogenetic protein (BMP) receptor 1A (BMPR1A)/activin-like kinase 3 (ALK3), but not carbonic anhydrase II (CAII). Here we report the single-cell RNA sequencing (scRNA-seq) of ALK3bright+-sorted ductal cells, a fraction that harbors BMP-responsive progenitor-like cells. Our analysis unveiled the existence of multiple subpopulations along two major axes, one that encompasses a gradient of ductal cell differentiation stages, and another featuring cells with transitional phenotypes toward acinar tissue. A third potential ducto-endocrine axis is revealed upon integration of the ALK3bright+ dataset with a single-cell whole-pancreas transcriptome. When transplanted into immunodeficient mice, P2RY1+/ALK3bright+ populations (enriched in PDX1+/ALK3+/CAII- cells) differentiate into all pancreatic lineages, including functional ß-cells. This process is accelerated when hosts are treated systemically with an ALK3 agonist. We found PDX1+/ALK3+/CAII- progenitor-like cells in the MPDs of types 1 and 2 diabetes donors, regardless of the duration of the disease. Our findings open the door to the pharmacological activation of progenitor cells in situ.


Assuntos
Pâncreas/citologia , Ductos Pancreáticos/citologia , Análise de Célula Única/métodos , Células-Tronco/citologia , Ativinas/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Diferenciação Celular , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Feminino , Humanos , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Modelos Animais , Receptores Purinérgicos P2Y1/metabolismo , Transcriptoma
16.
Urology ; 129: 60-67, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30904638

RESUMO

OBJECTIVE: To investigate a genetic cause of neonatal testicular torsion in 2 siblings and paternal cryptorchidism in a Caucasian family without history of consanguinity, we performed whole exome sequencing. PATIENTS AND METHODS: Targeted exon/whole-exome sequencing was performed in 2 siblings with testicular torsion. Potentially pathogenic variants passing filter criteria were validated with Sanger sequencing of parents to confirm familial segregation. Additionally, immunofluorescence staining for Raf-1, pERK (downstream from Raf-1) and c-Kit was performed on a testicular biopsy on the preserved testicle from the proband brother and compared with testicular biopsies from fertile men. RESULTS: A potentially pathogenic variant was identified in the RAF1 gene (serine/threonine-protein kinase) in exon 7 of chromosome 3: 12645786 G > C; both brothers and father were heterozygous for the variant, while the mother was negative for this mutation. This mutation in exon 7 (chr3:) of RAF1 is predicted to be damaging as a highly conserved splicing site is disrupted. The mutation is not found in the single nucleotide polymorphism database, the 1000 Genomes Project, ExACT, or esp6500. Immunofluorescence of the testis biopsy from one of the brothers demonstrated markedly decreased expression of Raf-1 as well as pERK but similar expression of c-kit when compared with fertile controls. CONCLUSION: We identified a novel nonsynonymous mutation in RAF1 in n Caucasian family with testicular torsion and cryptorchidism. We present the first human evidence that the RAF/MEK/ERK pathway is associated with testicular descent.


Assuntos
Heterozigoto , Mutação , Proteínas Proto-Oncogênicas c-raf/genética , Torção do Cordão Espermático/genética , Criptorquidismo/genética , Humanos , Recém-Nascido , Masculino , Linhagem , Sequenciamento do Exoma
17.
Am J Kidney Dis ; 74(1): 73-81, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30826088

RESUMO

RATIONALE & OBJECTIVE: Improving arteriovenous fistula (AVF) outcomes requires better understanding of the biology underlying maturation or failure. Our current knowledge of maturation relies on extrapolation from other vascular pathologies, which does not incorporate unique aspects of AVF remodeling. This study compares the RNA expression of pre-access (native) veins and AVFs with distinct maturation outcomes. STUDY DESIGN: Case-control study. SETTING & PARTICIPANTS: 64 patients undergoing 2-stage AVF surgeries at a single center. 19 native veins and 19 AVF samples were analyzed using RNA sequencing (RNA-seq). 58 native veins were studied using real-time polymerase chain reaction; 45, using immunohistochemistry; and 19, using Western blot analysis. PREDICTOR: RNA expression in native veins and AVFs. OUTCOME: Anatomic nonmaturation, defined as an AVF that never achieved an internal diameter ≥ 6mm. ANALYTICAL APPROACH: Pre-access native veins and AVF samples were obtained from patients undergoing 2-stage AVF creation. Veins that subsequently matured or failed after access creation were analyzed using RNA-seq to search for genes associated with maturation failure. Genes associated with nonmaturation were confirmed using real-time polymerase chain reaction, immunohistochemistry, and Western blot analysis. In addition, the association between pre-access gene expression and postoperative morphology was evaluated. RNA-seq was also performed on AVFs to search for transcriptional differences between AVFs that matured and those that failed at the time of transposition. RESULTS: Pro-inflammatory genes (CSF3R, FPR1, S100A8, S100A9, and VNN2) were upregulated in pre-access veins that failed (false discovery rate < 0.05), and their expression colocalized to smooth muscle cells. Expression of S100A8 and S100A9 correlated with postoperative intimal hyperplasia and the product of medial fibrosis and intimal hyperplasia (r=0.32-0.38; P < 0.05). AVFs that matured or failed were transcriptionally similar at the time of transposition. LIMITATIONS: Small sample size, analysis of only upper-arm veins and transposed fistulas. CONCLUSIONS: Increased expression of proinflammatory genes in pre-access veins appears to be associated with greater risk for AVF nonmaturation.


Assuntos
Derivação Arteriovenosa Cirúrgica , Calgranulina A/genética , Calgranulina B/genética , Diálise Renal/métodos , Túnica Íntima/patologia , Veias , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Derivação Arteriovenosa Cirúrgica/métodos , Correlação de Dados , Feminino , Humanos , Hiperplasia , Imuno-Histoquímica , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA/métodos , Transcriptoma , Grau de Desobstrução Vascular , Remodelação Vascular/genética , Veias/metabolismo , Veias/patologia , Veias/fisiopatologia
18.
Front Immunol ; 10: 2888, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921151

RESUMO

Introduction:Mycobacteria are aerobic non-motile organisms with lipid rich, hydrophobic cell walls that render them resistant to antibiotics. While there are over 150 different species of NTM, Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) are two of the most common culprits of pulmonary infection. MAB has been found to be most common in southeastern United States (Florida to Texas) and the third most rapidly growing NTM infection. It is responsible for chronic lung infections. Mycobacterial cell wall components initiate the interaction between bacteria and host. The reaction between bronchial epithelia and components in the envelope of mycobacterial cell wall is poorly understood. Methods: A lung-on-membrane model was developed with normal human bronchial epithelial (NHBE) cells re-differentiated at the air-liquid interface (ALI) and human endothelial cells on a transwell® polyester membrane. Microparticles from MAB cell walls were developed by an inhouse protocol and added to the ALI side of lung model. NHBE cells were harvested at day 3. RNA was isolated and analyzed with RNASeq. NHBE cells were lysed and protein assay was performed with western blot. We tested whether lung INF-alpha expression would increase in mice treated with intratracheal MAB cell wall particles. A paired t-test is used to compare two population means using GraphPad Prism 7 software. Results: RNAseq analysis identified 1759 differentially expressed genes between NHBE cells challenged with and without MAB microparticles with FDR < 0.5. 410 genes had a 2.5-fold change (FC) or greater. NHBE cells exposure to MAB microparticles significantly enriched the IFN I signaling pathway. Protein overexpression of IFN I family (2'-5'-Oligoadenylate Synthetase 1, Interferon-induced GTP-binding protein Mx1, Interferon-stimulated gene 15) was found in bronchial epithelial cells following exposure to MAB cell wall microparticles. IFN-α protein and gene expressions were significantly increased in mice lung challenged with microparticles in comparison with controls. Conclusion: These data strongly support the role of Type I IFN in cross-talk between NHBE cells and MAB. They also suggest that initiating immune response by NHBE cells may play a central role in innate immunity. Furthermore, this study underscores the importance of mycobacterial cell wall in initiating innate immune response.


Assuntos
Interferon Tipo I/metabolismo , Infecções por Mycobacterium não Tuberculosas/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/fisiologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Transdução de Sinais , Adulto , Idoso , Animais , Citocinas/genética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Infecções por Mycobacterium não Tuberculosas/imunologia , Mucosa Respiratória/imunologia , Adulto Jovem
19.
J Orthop Res ; 36(6): 1659-1665, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29106758

RESUMO

Traumatic knee injuries often result in damage to articular cartilage and other joint structures. Such trauma is a strong risk factor for the future development and progression of osteoarthritis (OA). The molecular mechanisms and signaling pathways modulating response to knee joint trauma remain unclear. Moreover, investigations of biomarkers influencing responses have been targeted rather than broad, unbiased discovery studies. Herein, we characterize the complete complement of extracellular RNA (exRNA) in the synovial fluid of 14 subjects following knee injury. Fluid was collected during surgery from the injured knees, and from the contralateral knee in a subset, undergoing surgical repair of the ACL and/or meniscal repair/debridement. Arthroscopic grading of chondral damage in four knee compartments was performed using the Outerbridge classification. exRNA was extracted and subjected to massively parallel total RNA sequencing. Differential abundance of RNA was calculated between the subject cohorts of injured and non-injured knee, average Outerbridge score ≥0.5 and less, and chronic and acute injury duration defined as ≤4 months till surgery or longer. Overall, expression of several thousand genes was identified in the synovial fluid. Furthermore, differential expression analysis suggests a role of exRNA fragments of matrix metalloproteinases and skeletal muscle fiber genes in the response to traumatic injury. Together, these data suggest that high-throughput approaches can indicate exRNA molecular signatures following knee trauma. Future studies are required to more fully characterize the biological roles of these exRNA and the cadence of their respective release that may lead to translational treatment options for post-traumatic OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1659-1665, 2018.


Assuntos
Perfilação da Expressão Gênica , Traumatismos do Joelho/metabolismo , RNA/análise , Líquido Sinovial/química , Adolescente , Adulto , Feminino , Humanos , Traumatismos do Joelho/complicações , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/etiologia , Projetos Piloto , Estudos Retrospectivos , Análise de Sequência de RNA , Adulto Jovem
20.
Ann Surg ; 266(6): 981-987, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27611612

RESUMO

OBJECTIVE: To test the hypothesis that major thoracoabdominal surgery induces gene expression changes associated with adverse outcomes. BACKGROUND: Widely different traumatic injuries evoke surprisingly similar gene expression profiles, but there is limited information on whether the iatrogenic injury caused by major surgery is associated with similar patterns. METHODS: With informed consent, blood samples were obtained from 50 patients before and after open transhiatal esophagectomy or pancreaticoduodenectomy. Twelve cases with complicated recoveries (death, infection, venous thromboembolism) were matched with 12 cases with uneventful recoveries. Global gene expression was assayed using human microarray chips. A 2-fold change with a corrected P < 0.05 was considered differentially expressed. RESULTS: In these 24 patients, 522 genes were differentially expressed after surgery; 248 (48%) were upregulated (innate immunity and inflammation) and 274 (52%) were downregulated [adaptive immunity (antigen presentation, T-cell function)]. Hierarchical clustering of the profile reliably predicted pre- and postoperative status. The within-patient change was 3.08 ±â€Š0.91-fold. There was no measurable association with age, malignancy, procedure, surgery length, operative blood loss, or transfusion requirements, but was positively associated with postoperative infection (3.81 ±â€Š0.97 vs 2.79 ±â€Š0.73; P = 0.009) and hospital length of stay (r = 0.583, P = 0.003). Venous thromboembolism and mortality each occurred in one patient, thus no associations were possible. CONCLUSIONS: Major surgery induces a quantifiable pattern of gene expression change that is associated with adverse outcome. This could reflect early impaired adaptive immunity and suggests potential therapeutic targets to improve postoperative recovery.


Assuntos
Esofagectomia/efeitos adversos , Expressão Gênica , Pancreaticoduodenectomia/efeitos adversos , Complicações Pós-Operatórias/genética , Imunidade Adaptativa , Idoso , Humanos , Imunidade Inata , Infecções/etiologia , Tempo de Internação , Complicações Pós-Operatórias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA