Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
ACS Pharmacol Transl Sci ; 5(12): 1267-1278, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36524008

RESUMO

The role of the NFL-TBS.40-63 peptide is to destroy the microtubule network of target glioma cancer cells. Recently, we have conceived a gold-complex biotinylated NFL-TBS.40-63 (BIOT-NFL) to form a hybrid gold nanovector (BIOT-NFL-PEG-AuNPs). This methodology showed, for the first time, the ability of the BIOT-NFL-PEG-AuNPs to target the destruction of pancreatic cancer cells (PDAC) under experimental conditions, as well as detoxification and preclinical therapeutic efficacy regulated by the steric and chemical configuration of the peptide. For this aim, a mouse transplantation tumor model induced by MIA-PACA-2 cells was applied to estimate the therapeutic efficacy of BIOT-NFL-PEG-AuNPs as a nanoformulation. Our relevant results display that BIOT-NFL-PEG-AuNPs slowed the tumor growth and decreased the tumor index without effects on the body weight of mice with an excellent antiangiogenic effect, mediated by the ability of BIOT-NFL-PEG-AuNPs to alter the metabolic profiles of these MIA-PACA-2 cells. The cytokine levels were detected to evaluate the behavior of serum inflammatory factors and the power of BIOT-NFL-PEG-AuNPs to boost the immune system.

2.
Nanoscale Adv ; 4(14): 3010-3022, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133522

RESUMO

This study promotes an innovative synthesis of a nanotheragnostic scaffold capable of targeting and destroying pancreatic cancer cells (PDAC) using the Biotinylated NFL-TBS.40-63 peptide (BIOT-NFL), known to enter various glioblastoma cancer cells (GBM) where it specifically destroys their microtubule network. This recently proposed methodology (P7391FR00-50481 LIV) applied to other peptides VIM (Vimentin) and TAT (Twin-Arginine Translocation) (CPP peptides) has many advantages, such as targeted selective internalization and high stability under experimental conditions, modulated by steric and chemical configurations of peptides. The successful interaction of peptides on gold surfaces has been confirmed by UV-visible, dynamic light scattering (DLS), Zeta potential (ZP) and Raman spectroscopy analyses. The cellular internalization in pancreatic ductal adenocarcinoma (PDAC; MIA PACA-2) and GBM (F98) cells was monitored by transmission electron microscopy (TEM) and showed a better cellular internalization in the presence of peptides with gold nanoparticles. In this work, we also evaluated the power of these hybrid peptide-nanoparticles as photothermal agents after cancer cell internalization. These findings envisage novel perspectives for the development of high peptide-nanotheragnostics.

3.
RSC Adv ; 12(19): 11708-11714, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35432942

RESUMO

Glioblastoma multiforme (GBM) is the most malignant primary brain tumor of the central nervous system. Despite advances in therapy, it remains largely untreatable, in part due to the low permeability of chemotherapeutic drugs across the blood-brain barrier (BBB) which significantly compromises their effectiveness. To circumvent the lack of drug efficiency, we designed multifunctional nanoparticles based on porous silicon. Herein, we propose an innovative synthesis technique for porous silicon nanorods (pSiNRs) with three-dimensional (3D) shape-controlled nanostructure. In order to achieve an efficient administration and improved treatment against GBM cells, a porous silicon nanoplatform is designed with magnetic guidance, fluorescence tracking and a cell-penetrating peptide (CPP). A NeuroFilament Light (NFL) subunit derived 24 amino acid tubulin binding site peptide called NFL-TBS.40-63 peptide or NFL-peptide was reported to preferentially target human GBM cells compared to healthy cells. Motivated by this approach, we investigated the use of magnetic-pSiNRs covered with superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic guidance, then decorated with the NFL-peptide to facilitate targeting and enhance internalization into human GBM cells. Unexpectedly, under confocal microscope imaging, the internalized multifunctional nanoparticles in GBM cells induce a remarkable exaltation of green fluorescence instead of the red native fluorescence from the dye due to a possible Förster resonance energy transfer (FRET). In addition, we showed that the uptake of NFL-peptide decorated magnetic-pSiNRs was preferential towards human GBM cells. This study presents the fabrication of magnetic-pSiNRs decorated with the NFL-peptide, which act as a remarkable candidate to treat brain tumors. This is supported by in vitro results and confocal imaging.

4.
Cell Death Dis ; 12(2): 190, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594040

RESUMO

Although aging is a major risk factor for most types of cancers, it is barely studied in this context. The transmembrane protein PLA2R1 (phospholipase A2 receptor) promotes cellular senescence, which can inhibit oncogene-induced tumor initiation. Functions and mechanisms of action of PLA2R1 during aging are largely unknown. In this study, we observed that old Pla2r1 knockout mice were more prone to spontaneously develop a wide spectrum of tumors compared to control littermates. Consistently, these knockout mice displayed increased Parp1, a master regulator of DNA damage repair, and decreased DNA damage, correlating with large human dataset analysis. Forced PLA2R1 expression in normal human cells decreased PARP1 expression, induced DNA damage and subsequent senescence, while the constitutive expression of PARP1 rescued cells from these PLA2R1-induced effects. Mechanistically, PARP1 expression is repressed by a ROS (reactive oxygen species)-Rb-dependent mechanism upon PLA2R1 expression. In conclusion, our results suggest that PLA2R1 suppresses aging-induced tumors by repressing PARP1, via a ROS-Rb signaling axis, and inducing DNA damage and its tumor suppressive responses.


Assuntos
Envelhecimento/metabolismo , Dano ao DNA , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Receptores da Fosfolipase A2/metabolismo , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Linhagem Celular , Proliferação de Células , Senescência Celular , Bases de Dados Genéticas , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores da Fosfolipase A2/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
5.
Aging Cell ; 17(6): e12835, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30216637

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a lethal premature aging that recapitulates many normal aging characteristics. This disorder is caused by mutation in the LMNA gene leading to the production of progerin which induces misshapen nuclei, cellular senescence, and aging. We previously showed that the phospholipase A2 receptor (PLA2R1) promotes senescence induced by replicative, oxidative, and oncogenic stress but its role during progerin-induced senescence and in progeria is currently unknown. Here, we show that knockdown of PLA2R1 prevented senescence induced by progerin expression in human fibroblasts and markedly delayed senescence of HGPS patient-derived fibroblasts. Whole-body knockout of Pla2r1 in a mouse model of progeria decreased some premature aging phenotypes, such as rib fracture and decreased bone content, together with decreased senescence marker. Progerin-expressing human fibroblasts exhibited a high frequency of misshapen nuclei and increased farnesyl diphosphate synthase (FDPS) expression compared to controls; knockdown of PLA2R1 reduced the frequency of misshapen nuclei and normalized FDPS expression. Pamidronate, a FDPS inhibitor, also reduced senescence and misshapen nuclei. Downstream of PLA2R1, we found that p53 mediated the progerin-induced increase in FDPS expression and in misshapen nuclei. These results suggest that PLA2R1 mediates key premature aging phenotypes through a p53/FDPS pathway and might be a new therapeutic target.


Assuntos
Senilidade Prematura/metabolismo , Senilidade Prematura/patologia , Receptores da Fosfolipase A2/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Forma do Núcleo Celular , Senescência Celular , Modelos Animais de Doenças , Geraniltranstransferase/metabolismo , Humanos , Lamina Tipo A/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Progéria/metabolismo , Progéria/patologia , Proteína Supressora de Tumor p53/metabolismo
6.
Trends Cancer ; 4(3): 222-238, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29506672

RESUMO

MicroRNAs (miRNAs) are key regulatory elements encoded by the genome. A single miRNA can downregulate the expression of multiple genes involved in diverse functions. Because cancer is a disease with multiple gene aberrations, developing novel approaches to identify and modulate miRNA pathways may result in a breakthrough for cancer treatment. With a special focus on glioblastoma (GBM), this review provides an up-to-date summary of miRNA biogenesis, the role of miRNA in cancer resistance, and essential tools for modulating miRNA expression, as well as of clinically promising RNAi delivery systems and how they can be adapted for therapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , MicroRNAs/uso terapêutico , Animais , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Terapia Genética/métodos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos
7.
Aging Cell ; 17(3): e12736, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446526

RESUMO

Oncogenic signals lead to premature senescence in normal human cells causing a proliferation arrest and the elimination of these defective cells by immune cells. Oncogene-induced senescence (OIS) prevents aberrant cell division and tumor initiation. In order to identify new regulators of OIS, we performed a loss-of-function genetic screen and identified that the loss of SCN9A allowed cells to escape from OIS. The expression of this sodium channel increased in senescent cells during OIS. This upregulation was mediated by NF-κB transcription factors, which are well-known regulators of senescence. Importantly, the induction of SCN9A by an oncogenic signal or by p53 activation led to plasma membrane depolarization, which in turn, was able to induce premature senescence. Computational and experimental analyses revealed that SCN9A and plasma membrane depolarization mediated the repression of mitotic genes through a calcium/Rb/E2F pathway to promote senescence. Taken together, our work delineates a new pathway, which involves the NF-κB transcription factor, SCN9A expression, plasma membrane depolarization, increased calcium, the Rb/E2F pathway and mitotic gene repression in the regulation of senescence. This work thus provides new insight into the involvement of ion channels and plasma membrane potential in the control of senescence.


Assuntos
Senescência Celular/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Proteína do Retinoblastoma/genética , Humanos , Oncogenes , Transdução de Sinais , Transfecção
8.
Theranostics ; 7(18): 4517-4536, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158842

RESUMO

PURPOSE: Gold standard beam radiation for glioblastoma (GBM) treatment is challenged by resistance phenomena occurring in cellular populations well prepared to survive or to repair damage caused by radiation. Among signals that have been linked with radio-resistance, the SDF1/CXCR4 axis, associated with cancer stem-like cell, may be an opportune target. To avoid the problem of systemic toxicity and blood-brain barrier crossing, the relevance and efficacy of an original system of local brain internal radiation therapy combining a radiopharmaceutical with an immuno-nanoparticle was investigated. EXPERIMENT DESIGN: The nanocarrier combined lipophilic thiobenzoate complexes of rhenium-188 loaded in the core of a lipid nanocapsule (LNC188Re) with a function-blocking antibody, 12G5 directed at the CXCR4, on its surface. The efficiency of 12G5-LNC188Re was investigated in an orthotopic and xenogenic GBM model of CXCR4-positive U87MG cells implanted in the striatum of Scid mice. RESULTS: We demonstrated that 12G5-LNC188Re single infusion treatment by convection-enhanced delivery resulted in a major clinical improvement in median survival that was accompanied by locoregional effects on tumor development including hypovascularization and stimulation of the recruitment of bone marrow derived CD11b- or CD68-positive cells as confirmed by immunohistochemistry analysis. Interestingly, thorough analysis by spectral imaging in a chimeric U87MG GBM model containing CXCR4-positive/red fluorescent protein (RFP)-positive- and CXCR4-negative/RFP-negative-GBM cells revealed greater confinement of DiD-labeled 12G5-LNCs than control IgG2a-LNCs in RFP compartments. Main conclusion: These findings on locoregional impact and targeting of disseminated cancer cells in tumor margins suggest that intracerebral active targeting of nanocarriers loaded with radiopharmaceuticals may have considerable benefits in clinical applications.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Nanopartículas/administração & dosagem , Radioisótopos/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Receptores CXCR4/administração & dosagem , Rênio/administração & dosagem , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos da radiação , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Lipídeos/administração & dosagem , Camundongos , Nanocápsulas/administração & dosagem , Células-Tronco Neoplásicas/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Oncotarget ; 7(22): 32100-12, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27050073

RESUMO

Solid tumors often display chemotherapy resistance. Pancreatic ductal adenocarcinoma (PDAC) is the archetype of resistant tumors as current chemotherapies are inefficient. The tumor stroma and extracellular matrix (ECM) are key contributors to PDAC aggressiveness and to limiting the efficacy of chemotherapy. Lysyl oxidase (LOX) family members mediate collagen cross-linking and thus promote ECM stiffening. Our data demonstrate increased LOX, LOXL1, and LOXL2 expression in PDAC, and that the level of fibrillar collagen, which is directly dependent of LOX family activity, is an independent predictive biomarker of adjuvant "Gemcitabine-based chemotherapy" benefit. Experimentally in mice, increased LOX family activity through LOXL2 promotes chemoresistance. This effect of LOX family activity seems to be due to decreased gemcitabine intra-tumoral diffusion. This observation might be explained by increased fibrillar collagen and decreased vessel size observed in tumors with increased LOX family activity. In conclusion, our data support that LOX family activity is both a novel target to improve chemotherapy as well as a novel biomarker to predict gemcitabine benefit in PDAC. Beyond the PDAC, it is possible that targeting LOX family activity might improve efficacy of chemotherapies against different kinds of solid tumors.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/tratamento farmacológico , Proteína-Lisina 6-Oxidase/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacocinética , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Difusão , Feminino , Colágenos Fibrilares/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína-Lisina 6-Oxidase/genética , Distribuição Tecidual , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
10.
Aging (Albany NY) ; 7(11): 986-1003, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26583757

RESUMO

Cellular senescence results in proliferation arrest and acquisition of hallmarks such as the Senescence-Associated Secretory Phenotype (SASP). Senescence is involved in regulating numerous physio-pathological responses, including embryonic development, cancer, and several aging-related diseases. Only a few kinases, centered on the RAS signaling pathway, have been identified as inducing premature senescence. About possible other senescence-regulating kinases and signaling pathways, practically little is known. By screening a library of activated kinases, we identified 33 kinases whose constitutive expression decreases cell proliferation and induces expression of senescence markers; p16 and SASP components. Focusing on some kinases showing the strongest pro-senescence effects, we observed that they all induce expression of SASP-component genes through activation of an NF-κB-dependent transcriptional program. Furthermore, inhibition of the p53 or Rb pathway failed to prevent the SASP-inducing effect of pro-senescence kinases. Inhibition of the NF-κB, p53, or Rb pathway proved insufficient to prevent kinase-triggered cell cycle arrest. We have thus identified a repertoire of novel pro-senescence kinases and pathways. These results will open new perspectives in the understanding on the role of cellular senescence in various physio-pathological responses.


Assuntos
Senescência Celular , NF-kappa B/fisiologia , Proteínas Quinases/fisiologia , Transcrição Gênica , Células Cultivadas , Genes p16 , Humanos , Proteína do Retinoblastoma/fisiologia , Transdução de Sinais , Proteína Supressora de Tumor p53/fisiologia
11.
Int J Oncol ; 40(4): 1220-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22134773

RESUMO

Among markers of glioblastoma initiating cells, AC133 has been shown to be associated with glioblastoma resistance and malignancy. Recently, it was demonstrated that increasing oxygen tension (pO2) down-regulated AC133 expression in glioblastoma cells in vitro. In order to better understand extrinsic factor regulation of AC133, this work aimed to investigate the relationship between cell culture pO2, AC133 expression, and tumor development and phenotype. Using treatments with CoCl2 and HIF-1α shRNA knockdowns on non-sorted human primary glioblastoma cells cultured at low (3%) versus high (21%) oxygen tension, we established a responsibility for low pO2 in the maintenance of high levels of AC133 expression, with a major but non-exclusive role for HIF-1α. We also demonstrated that human glioblastoma cells previously cultured under high oxygen tension can lose part of their aggressiveness when orthotopically engrafted in SCID mice or lead to tumors with distinct phenotypes and no re-expression of AC133. These observations showed that the specific pO2 microenvironment irreversibly impacts glioblastoma cell phenotypes, highlighting the pertinence of culture conditions when extrapolating data from xenogenic models to human cells in their source environment. They also raised AC133 as a marker of non-exposure to oxygenated areas rather than a marker of aggressiveness or low pO2 niches.


Assuntos
Antígenos CD/biossíntese , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glicoproteínas/biossíntese , Oxigênio/administração & dosagem , Antígeno AC133 , Animais , Antígenos CD/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Glicoproteínas/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos SCID , Pressão Parcial , Peptídeos/genética , Transplante Heterólogo
12.
PLoS One ; 6(9): e25515, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966538

RESUMO

As the pentaspan stem cell marker CD133 was shown to bind cholesterol and to localize in plasma membrane protrusions, we investigated a possible function for CD133 in endocytosis. Using the CD133 siRNA knockdown strategy and non-differentiated human colon cancer Caco-2 cells that constitutively over-expressed CD133, we provide for the first time direct evidence for a role of CD133 in the intracellular accumulation of fluorescently labeled extracellular compounds. Assessed using AC133 monoclonal antibody, CD133 knockdown was shown to improve Alexa488-transferrin (Tf) uptake in Caco-2 cells but had no impact on FITC-dextran or FITC-cholera-toxin. Absence of effect of the CD133 knockdown on Tf recycling established a role for CD133 in inhibiting Tf endocytosis rather than in stimulating Tf exocytosis. Use of previously identified inhibitors of known endocytic pathways and the positive impact of CD133 knockdown on cellular uptake of clathrin-endocytosed synthetic lipid nanocapsules supported that CD133 impact on endocytosis was primarily ascribed to the clathrin pathway. Also, cholesterol extraction with methyl-ß-cyclodextrine up regulated Tf uptake at greater intensity in the CD133(high) situation than in the CD133(low) situation, thus suggesting a role for cholesterol in the inhibitory effect of CD133 on endocytosis. Interestingly, cell treatment with the AC133 antibody down regulated Tf uptake, thus demonstrating that direct extracellular binding to CD133 could affect endocytosis. Moreover, flow cytometry and confocal microscopy established that down regulation of CD133 improved the accessibility to the TfR from the extracellular space, providing a mechanism by which CD133 inhibited Tf uptake. As Tf is involved in supplying iron to the cell, effects of iron supplementation and deprivation on CD133/AC133 expression were investigated. Both demonstrated a dose-dependent down regulation here discussed to the light of transcriptional and post-transciptional effects. Taken together, these data extend our knowledge of the function of CD133 and underline the interest of further exploring the CD133-Tf-iron network.


Assuntos
Antígenos CD/metabolismo , Neoplasias do Colo/metabolismo , Glicoproteínas/metabolismo , Ferro/metabolismo , Peptídeos/metabolismo , Transferrina/metabolismo , Antígeno AC133 , Antígenos CD/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Células CACO-2 , Clorpromazina/farmacologia , Neoplasias do Colo/genética , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Glicoproteínas/genética , Humanos , Nanocápsulas , Peptídeos/genética , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA