Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105638

RESUMO

The series of ethylene-norbornene (E-NB) copolymers was obtained using different vanadium homogeneous and supported ionic liquid (SIL) catalyst systems. The 13C and 1H NMR (carbon and proton nuclear magnetic resonance spectroscopy) together with differential scanning calorimetry (DSC) were applied to determine the composition of copolymers such as comonomer incorporation (CNB), monomer dispersity (MD), monomer reactivity ratio (re), sequence length of ethylene (le) and tetrad microblock distributions. The relation between the type of catalyst, reaction conditions and on the other hand, the copolymer microstructure, chain termination reaction analyzed by the type of unsaturation are discussed. In addition, the thermal properties of E-NB copolymers such as the melting and crystallization behavior, like also the heterogeneity of composition described by successive the self-nucleation and annealing (SSA) and the dispersity index (DI) were determined.

2.
Polymers (Basel) ; 10(2)2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-30966258

RESUMO

The copolymers of ethylene (E) with open-caged iso-butyl-substituted tri-alkenyl-silsesquioxanes (POSS-6-3 and POSS-10-3) and phenyl-substituted tetra-alkenyl-silsesquioxane (POSS-10-4) were synthesized by copolymerization over the ansa-metallocene catalyst. The influence of the kind of silsesquioxane and of the copolymerization conditions on the reaction performance and on the properties of the copolymers was studied. In the case of copolymerization of E/POSS-6-3, the positive comonomer effect was observed, which was associated with the influence of POSS-6-3 on transformation of the bimetallic ion pair to the active catalytic species. Functionality of silsesquioxanes and polymerization parameters affected the polyhedral oligomeric silsesquioxanes (POSS) contents in the copolymers which varied in the range of 1.33⁻7.43 wt %. Tri-alkenyl-silsesquioxanes were incorporated into the polymer chain as pendant groups while the tetra-alkenyl-silsesquioxane derivative could act as a cross-linking agent which was proved by the changes in the contents of unsaturated end groups, by the glass transition temperature values, and by the gel contents (up to 81.3% for E/POSS-10-4). Incorporation of multi-alkenyl-POSS into the polymer chain affected also the melting and crystallization behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA