Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Acta Biomater ; 153: 243-259, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36374749

RESUMO

There are no drugs or treatment methods known to prevent the development of post-traumatic osteoarthritis (PTOA), a type of osteoarthritis (OA) that is triggered by traumatic joint injuries and accounts for ∼12% of the nearly 600 million OA cases worldwide. Lack of effective drug delivery techniques remains a major challenge in developing clinically effective treatments, but cationic delivery carriers can help overcome this challenge. Scaling up treatments that are effective in in vitro models to achieve success in preclinical in vivo models and clinical trials is also a challenging problem in the field. Here we use a cationic green fluorescent protein (GFP) as a carrier to deliver Insulin-Like Growth Factor 1 (IGF-1), a drug considered as a potential therapeutic for PTOA. GFP-IGF-1 conjugates were first synthesized as fusion proteins with different polypeptide linkers, and their transport properties were characterized in human cartilage explants. In vitro experimental data were used to develop a predictive mathematical transport model that was validated using an independent in vitro experimental data set. The model was used to predict the transport of these fusion proteins upon intra-articular injection into human knee joints. The predictions included results for the rate and extent of fusion protein penetration into cartilage, and the maximum levels of fusion proteins that would escape into systemic circulation through the joint capsule. Together, our transport measurements and model set the stage for translation of such explant culture studies to in vivo preclinical studies and potentially clinical application. STATEMENT OF SIGNIFICANCE: The lack of blood supply in cartilage and rapid clearance of drugs injected into human knees presents a major challenge in developing clinically effective treatments for osteoarthritis. Cationic delivery carriers can target negatively charged cartilage and help overcome this problem. Scaling up treatments that are effective in vitro to achieve success in vivo is also challenging. Here, we use a cationic green fluorescent protein (GFP) to deliver Insulin-Like Growth Factor-1 (IGF-1) into cartilage. Experiments measuring transport of GFP-IGF-1 fusion proteins in human cartilage explants were used to develop and validate a mathematical model to predict fusion protein transport upon injection into human knee joints. This work translates such explant culture studies to in vivo preclinical studies and potentially clinical application.


Assuntos
Cartilagem Articular , Fator de Crescimento Insulin-Like I , Osteoartrite , Humanos , Cartilagem Articular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Articulação do Joelho , Osteoartrite/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Sistemas de Liberação de Medicamentos
2.
J Orthop Res ; 40(7): 1505-1522, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34533840

RESUMO

Excessive tissue deformation near cartilage lesions and acute inflammation within the knee joint after anterior cruciate ligament (ACL) rupture and reconstruction surgery accelerate the loss of fixed charge density (FCD) and subsequent cartilage tissue degeneration. Here, we show how biomechanical and biochemical degradation pathways can predict FCD loss using a patient-specific finite element model of an ACL reconstructed knee joint exhibiting a chondral lesion. Biomechanical degradation was based on the excessive maximum shear strains that may result in cell apoptosis, while biochemical degradation was driven by the diffusion of pro-inflammatory cytokines. We found that the biomechanical model was able to predict substantial localized FCD loss near the lesion and on the medial areas of the lateral tibial cartilage. In turn, the biochemical model predicted FCD loss all around the lesion and at intact areas; the highest FCD loss was at the cartilage-synovial fluid-interface and decreased toward the deeper zones. Interestingly, simulating a downturn of an acute inflammatory response by reducing the cytokine concentration exponentially over time in synovial fluid led to a partial recovery of FCD content in the cartilage. Our novel numerical approach suggests that in vivo FCD loss can be estimated in injured cartilage following ACL injury and reconstruction. Our novel modeling platform can benefit the prediction of PTOA progression and the development of treatment interventions such as disease-modifying drug testing and rehabilitation strategies.


Assuntos
Lesões do Ligamento Cruzado Anterior , Cartilagem Articular , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/metabolismo , Lesões do Ligamento Cruzado Anterior/cirurgia , Cartilagem Articular/patologia , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Articulação do Joelho/cirurgia , Tíbia
3.
Biophys J ; 121(2): 277-287, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34951982

RESUMO

Mucus is a selectively permeable hydrogel that protects wet epithelia from pathogen invasion and poses a barrier to drug delivery. Determining the parameters of a particle that promote or prevent passage through mucus is critical, as it will enable predictions about the mucosal passage of pathogens and inform the design of therapeutics. The effect of particle net charge and size on mucosal transport has been characterized using simple model particles; however, predictions of mucosal passage remain challenging. Here, we utilize rationally designed peptides to examine the integrated contributions of charge, hydrophobicity, and spatial configuration on mucosal transport. We find that net charge does not entirely predict transport. Specifically, for cationic peptides, the inclusion of hydrophobic residues and the position of charged and hydrophobic residues within the peptide impact mucosal transport. We have developed a simple model of mucosal transport that predicts how previously unexplored amino acid sequences achieve slow versus fast passage through mucus. This model may be used as a basis to predict transport behavior of natural peptide-based particles, such as antimicrobial peptides or viruses, and assist in the engineering of synthetic sequences with desired transport properties.


Assuntos
Muco , Peptídeos , Interações Hidrofóbicas e Hidrofílicas , Muco/metabolismo , Peptídeos/química
4.
Am J Sports Med ; 49(9): 2498-2508, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34161182

RESUMO

BACKGROUND: Microfracture augmentation can be a cost-effective single-step alternative to current cartilage repair techniques. Trypsin pretreatment combined with a growth factor-functionalized self-assembling KLD hydrogel ("functionalized hydrogel") has been shown to improve overall cartilage repair and integration to surrounding tissue in small animal models of osteochondral defects. HYPOTHESIS: Microfracture combined with trypsin treatment and a functionalized hydrogel will improve reparative tissue quality and integration as compared with microfracture alone in an equine model. STUDY DESIGN: Controlled laboratory study. METHODS: Bilateral cartilage defects (15-mm diameter) were created on the medial trochlear ridge of the femoropatellar joints in 8 adult horses (16 defects total). One defect was randomly selected to receive the treatment, and the contralateral defect served as the control (microfracture only). Treatment consisted of 2-minute trypsin pretreatment of the surrounding cartilage, subchondral bone microfracture, and functionalized hydrogel premixed with growth factors (platelet-derived growth factor and heparin-binding insulin-like growth factor 1). After surgery, all horses were subjected to standardized controlled exercise on a high-speed treadmill. Clinical evaluation was conducted monthly, and radiographic examinations were performed at 2, 16, 24, 32, 40, and 52 weeks after defect creation. After 12 months, all animals were euthanized. Magnetic resonance imaging, arthroscopy, gross pathologic evaluation of the joint, histology, immunohistochemistry, and biomechanical analyses were performed. Generalized linear mixed models (with horse as random effect) were utilized to assess outcome parameters. When P values were <.05, pairwise comparisons were made using least squares means. RESULTS: Improved functional outcome parameters were observed for the treatment group, even though mildly increased joint effusion and subchondral bone sclerosis were noted on imaging. Microscopically, treatment resulted in improvement of several histologic parameters and overall quality of repaired tissue. Proteoglycan content based on safranin O-fast green staining was also significantly higher in the treated defects. CONCLUSION: Trypsin treatment combined with functionalized hydrogel resulted in improved microfracture augmentation. CLINICAL RELEVANCE: Therapeutic strategies for microfracture augmentation, such as those presented in this study, can be cost-effective ways to improve cartilage healing outcomes, especially in more active patients.


Assuntos
Cartilagem Articular , Fraturas de Estresse , Animais , Cartilagem Articular/cirurgia , Cavalos , Humanos , Hidrogéis/farmacologia , Peptídeos , Fator de Crescimento Derivado de Plaquetas , Tripsina
5.
Commun Biol ; 4(1): 332, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712729

RESUMO

A hallmark of cells comprising the superficial zone of articular cartilage is their expression of lubricin, encoded by the Prg4 gene, that lubricates the joint and protects against the development of arthritis. Here, we identify Creb5 as a transcription factor that is specifically expressed in superficial zone articular chondrocytes and is required for TGF-ß and EGFR signaling to induce Prg4 expression. Notably, forced expression of Creb5 in chondrocytes derived from the deep zone of the articular cartilage confers the competence for TGF-ß and EGFR signals to induce Prg4 expression. Chromatin-IP and ATAC-Seq analyses have revealed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, that display an open chromatin conformation specifically in superficial zone articular chondrocytes; and which work in combination with a more distal regulatory element to drive induction of Prg4 by TGF-ß. Our results indicate that Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/metabolismo , Proteoglicanas/metabolismo , Animais , Sítios de Ligação , Cartilagem Articular/efeitos dos fármacos , Bovinos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/genética , Regulação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteoglicanas/genética , Fator de Crescimento Transformador alfa/farmacologia , Fator de Crescimento Transformador beta2/farmacologia
6.
Nat Biomed Eng ; 3(3): 230-245, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30948807

RESUMO

The compression of brain tissue by a tumour mass is believed to be a major cause of the clinical symptoms seen in patients with brain cancer. However, the biological consequences of these physical stresses on brain tissue are unknown. Here, via imaging studies in patients and by using mouse models of human brain tumours, we show that a subgroup of primary and metastatic brain tumours, classified as nodular on the basis of their growth pattern, exert solid stress on the surrounding brain tissue, causing a decrease in local vascular perfusion as well as neuronal death and impaired function. We demonstrate a causal link between solid stress and neurological dysfunction by applying and removing cerebral compression, which respectively mimic the mechanics of tumour growth and of surgical resection. We also show that, in mice, treatment with lithium reduces solid-stress-induced neuronal death and improves motor coordination. Our findings indicate that brain-tumour-generated solid stress impairs neurological function in patients, and that lithium as a therapeutic intervention could counter these effects.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/fisiopatologia , Lítio/uso terapêutico , Estresse Fisiológico , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Humanos , Camundongos Nus , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Perfusão
7.
Sci Transl Med ; 10(469)2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487252

RESUMO

Osteoarthritis is a debilitating joint disease affecting nearly 30 million people for which there are no disease-modifying therapies. Several drugs that have failed clinical trials have shown inefficient and inadequate delivery to target cells. Anabolic growth factors are one class of such drugs that could be disease-modifying if delivered directly to chondrocytes, which reside deep within dense, anionic cartilage tissue. To overcome this biological barrier, we conjugated a growth factor to a cationic nanocarrier for targeted delivery to chondrocytes and retention within joint cartilage after direct intra-articular injection. The nanocarrier uses reversible electrostatic interactions with anionic cartilage tissue to improve tissue binding, penetration, and residence time. Amine terminal polyamidoamine (PAMAM) dendrimers were end functionalized with variable molar ratios of poly(ethylene glycol) (PEG) to control surface charge. From this small family of variably PEGylated dendrimers, an optimal formulation showing 70% uptake into cartilage tissue and 100% cell viability was selected. When conjugated to insulin-like growth factor 1 (IGF-1), the dendrimer penetrated bovine cartilage of human thickness within 2 days and enhanced therapeutic IGF-1 joint residence time in rat knees by 10-fold for up to 30 days. In a surgical model of rat osteoarthritis, a single injection of dendrimer-IGF-1 rescued cartilage and bone more effectively than free IGF-1. Dendrimer-IGF-1 reduced width of cartilage degeneration by 60% and volumetric osteophyte burden by 80% relative to untreated rats at 4 weeks after surgery. These results suggest that PEGylated PAMAM dendrimer nanocarriers could improve pharmacokinetics and efficacy of disease-modifying osteoarthritis drugs in the clinic.


Assuntos
Cartilagem Articular/patologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Fator de Crescimento Insulin-Like I/uso terapêutico , Nanopartículas/química , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Animais , Cartilagem Articular/efeitos dos fármacos , Bovinos , Dendrímeros/química , Modelos Animais de Doenças , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Articulações/efeitos dos fármacos , Articulações/patologia , Articulações/cirurgia , Masculino , Osteófito/patologia , Polietilenoglicóis/química , Ratos Sprague-Dawley , Fatores de Tempo
8.
Matrix Biol ; 71-72: 51-69, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29803938

RESUMO

Hyaline cartilages, fibrocartilages and elastic cartilages play multiple roles in the human body including bearing loads in articular joints and intervertebral discs, providing joint lubrication, forming the external ears and nose, supporting the trachea, and forming the long bones during development and growth. The structure and organization of cartilage's extracellular matrix (ECM) are the primary determinants of normal function. Most diseases involving cartilage lead to dramatic changes in the ECM which can govern disease progression (e.g., in osteoarthritis), cause the main symptoms of the disease (e.g., dwarfism caused by genetically inherited mutations) or occur as collateral damage in pathological processes occurring in other nearby tissues (e.g., osteochondritis dissecans and inflammatory arthropathies). Challenges associated with cartilage diseases include poor understanding of the etiology and pathogenesis, delayed diagnoses due to the aneural nature of the tissue and drug delivery challenges due to the avascular nature of adult cartilages. This narrative review provides an overview of the clinical and pathological features as well as current treatment options available for various cartilage diseases. Late breaking advances are also described in the quest for development and delivery of effective disease modifying drugs for cartilage diseases including osteoarthritis, the most common form of arthritis that affects hundreds of millions of people worldwide.


Assuntos
Doenças das Cartilagens/diagnóstico , Matriz Extracelular/genética , Doenças das Cartilagens/genética , Doenças das Cartilagens/metabolismo , Cartilagem Articular/citologia , Cartilagem Articular/patologia , Progressão da Doença , Matriz Extracelular/metabolismo , Humanos , Mutação
9.
J Tissue Eng Regen Med ; 12(2): e1206-e1220, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28714570

RESUMO

Autologous chondrocyte implantation (ACI) is used in 34-60% for osteoarthritic (OA) cartilage defects, although ACI is neither recommended nor designed for OA. Envisioning a hydrogel-based ACI for OA that uses chondrons instead of classically used chondrocytes, we hypothesized that human OA chondrons may outperform OA chondrocytes. We compared patient- and joint surface-matched human OA chondrons with OA chondrocytes cultured for the first time in a hydrogel, using a self-assembling peptide system. We determined yield, viability, cell numbers, mRNA expression, GAPDH mRNA enzyme activity, Collagen II synthesis (CPII) and degradation (C2C), and sulfated glycosaminoglycan. Ex vivo, mRNA expression was comparable. Over time, significant differences in survival led to 3.4-fold higher OA chondron numbers in hydrogels after 2 weeks (p = .002). Significantly, more enzymatically active GAPDH protein indicated higher metabolic activity. The number of cultures that expressed mRNA for Collagen Types I and VI, COMP, aggrecan, VEGF, TGF-ß1, and FGF-2 (but not Collagen Types II and X) was different, resulting in a 3.5-fold higher number of expression-positive OA chondron cultures (p < .05). Measuring CPII and C2C per hydrogel, OA chondron hydrogels synthesized more than they degraded Collagen Type II, the opposite was true for OA chondrocytes. Per cell, OA chondrons but not OA chondrocytes displayed more synthesis than degradation. Thus, OA chondrons displayed superior biosynthesis and mRNA expression of tissue engineering and phenotype-relevant genes. Moreover, human OA chondrons displayed a significant survival advantage in hydrogel culture, whose presence, drastic extent, and timescale was novel and is clinically significant. Collectively, these data highlight the high potential of human OA chondrons for OA ACI, as they would outnumber and, thus, surpass OA chondrocytes.


Assuntos
Cartilagem Articular/patologia , Condrócitos/transplante , Hidrogéis/farmacologia , Articulações/patologia , Osteoartrite/patologia , Cicatrização/efeitos dos fármacos , Adulto , Idoso , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/ultraestrutura , Colágeno Tipo II/metabolismo , Epitopos/metabolismo , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Pessoa de Meia-Idade , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transplante Autólogo , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 114(36): 9529-9534, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827333

RESUMO

Active transport in the cytoplasm plays critical roles in living cell physiology. However, the mechanical resistance that intracellular compartments experience, which is governed by the cytoplasmic material property, remains elusive, especially its dependence on size and speed. Here we use optical tweezers to drag a bead in the cytoplasm and directly probe the mechanical resistance with varying size a and speed V We introduce a method, combining the direct measurement and a simple scaling analysis, to reveal different origins of the size- and speed-dependent resistance in living mammalian cytoplasm. We show that the cytoplasm exhibits size-independent viscoelasticity as long as the effective strain rate V/a is maintained in a relatively low range (0.1 s-1 < V/a < 2 s-1) and exhibits size-dependent poroelasticity at a high effective strain rate regime (5 s-1 < V/a < 80 s-1). Moreover, the cytoplasmic modulus is found to be positively correlated with only V/a in the viscoelastic regime but also increases with the bead size at a constant V/a in the poroelastic regime. Based on our measurements, we obtain a full-scale state diagram of the living mammalian cytoplasm, which shows that the cytoplasm changes from a viscous fluid to an elastic solid, as well as from compressible material to incompressible material, with increases in the values of two dimensionless parameters, respectively. This state diagram is useful to understand the underlying mechanical nature of the cytoplasm in a variety of cellular processes over a broad range of speed and size scales.


Assuntos
Citoplasma/química , Citoplasma/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos , Citoplasma/efeitos dos fármacos , Citoesqueleto/química , Elasticidade , Células Epiteliais/citologia , Células HeLa/citologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Rim/citologia , Miosina Tipo II/antagonistas & inibidores , Miosina Tipo II/metabolismo , Pinças Ópticas , Ratos , Viscosidade
11.
Arthritis Res Ther ; 19(1): 157, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679445

RESUMO

BACKGROUND: A hallmark of osteoarthritis is increased proteolytic cleavage of aggrecan. Cross talk between cartilage and the synovium + joint capsule (SJC) can drive cartilage degradation by activating proteases in both tissues. We investigated aggrecan proteolysis patterns in cartilage explants using a physiologically relevant explant model of joint injury combining cartilage mechanical compression and coincubation with SJC. METHODS: Bovine cartilage explants were untreated; coincubated with SJC; or subjected to mechanical injury and coincubated with SJC, mechanical injury alone, or mechanical injury and incubated with tumor necrosis factor-α (TNF-α). To compare the patterns of aggrecan proteolysis between 6 h and 16 days, release of sulfated glycosaminoglycans and specific proteolytic aggrecan fragments into medium or remaining in cartilage explants was measured by dimethylmethylene blue and Western blot analysis. RESULTS: Aggrecanase activity toward aggrecan was observed in all conditions, but it was directed toward the TEGE↓ARGS interglobular domain (IGD) site only when cartilage was coincubated with SJC or TNF-α. Matrix metalloproteinase (MMP) activity at the aggrecan IGD site (IPES↓FFGV) was not detected when cartilage was exposed to TNF-α (up to 6 days), but it was in all other conditions. Compared with when bovine cartilage was left untreated or subjected to mechanical injury alone, additional aggrecan fragment types were released into medium and proteolysis of aggrecan started at an earlier time when SJC was present. CONCLUSIONS: Indicative of different proteolytic pathways for aggrecan degradation, the SJC increases both aggrecanase and MMP activity toward aggrecan, whereas TNF-α inhibits MMP activity against the IGD of aggrecan.


Assuntos
Cartilagem Articular/metabolismo , Endopeptidases/metabolismo , Cápsula Articular/metabolismo , Metaloproteinases da Matriz/metabolismo , Membrana Sinovial/metabolismo , Animais , Bovinos , Técnicas de Cocultura/métodos , Técnicas de Cultura de Órgãos/métodos , Osteoartrite/enzimologia
12.
J Orthop Res ; 35(3): 406-411, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27176565

RESUMO

Injury to the joint provokes a number of local pathophysiological changes, including synthesis of inflammatory cytokines, death of chondrocytes, breakdown of the extra-cellular matrix of cartilage, and reduced synthesis of matrix macromolecules. These processes combine to engender the subsequent development of post-traumatic osteoarthritis (PTOA). To prevent this from happening, it is necessary to inhibit these disparate responses to injury; given their heterogeneity, this is challenging. However, dexamethasone has the necessary pleiotropic properties required of a drug for this purpose. Using in vitro models, we have shown that low doses of dexamethasone sustain the synthesis of cartilage proteoglycans while inhibiting their breakdown after injurious compression in the presence or absence of inflammatory cytokines. Under these conditions, dexamethasone is non-toxic and maintains the viability of chondrocytes exposed chronically to such cytokines as interleukin (IL) -1, IL-6, and tumor necrosis factor-α. Moreover, the anti-inflammatory properties of dexamethasone have been appreciated for decades. In view of this information, we have initiated a pilot clinical study to determine whether a single, intra-articular injection of dexamethasone into the wrist shows promise in preventing PTOA after intra-articular fracture of the distal radius. CLINICAL SIGNIFICANCE: Suppressing the various etiopathophysiological responses to injury in the joint is an attractive strategy for lowering the clinical burden of PTOA. The intra-articular administration of dexamethasone soon after injury offers a simple and inexpensive means of accomplishing this. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:406-411, 2017.


Assuntos
Dexametasona/administração & dosagem , Glucocorticoides/administração & dosagem , Articulações/lesões , Osteoartrite/prevenção & controle , Ferimentos e Lesões/complicações , Animais , Cartilagem Articular/lesões , Ensaios Clínicos como Assunto , Humanos , Inflamação/etiologia , Osteoartrite/etiologia
13.
Sci Transl Med ; 8(360): 360ra135, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733559

RESUMO

The survival benefit of anti-vascular endothelial growth factor (VEGF) therapy in metastatic colorectal cancer (mCRC) patients is limited to a few months because of acquired resistance. We show that anti-VEGF therapy induced remodeling of the extracellular matrix with subsequent alteration of the physical properties of colorectal liver metastases. Preoperative treatment with bevacizumab in patients with colorectal liver metastases increased hyaluronic acid (HA) deposition within the tumors. Moreover, in two syngeneic mouse models of CRC metastasis in the liver, we show that anti-VEGF therapy markedly increased the expression of HA and sulfated glycosaminoglycans (sGAGs), without significantly changing collagen deposition. The density of these matrix components correlated with increased tumor stiffness after anti-VEGF therapy. Treatment-induced tumor hypoxia appeared to be the driving force for the remodeling of the extracellular matrix. In preclinical models, we show that enzymatic depletion of HA partially rescued the compromised perfusion in liver mCRCs after anti-VEGF therapy and prolonged survival in combination with anti-VEGF therapy and chemotherapy. These findings suggest that extracellular matrix components such as HA could be a potential therapeutic target for reducing physical barriers to systemic treatments in patients with mCRC who receive anti-VEGF therapy.


Assuntos
Bevacizumab/uso terapêutico , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Bevacizumab/efeitos adversos , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Neoplasias Colorretais/terapia , Resistencia a Medicamentos Antineoplásicos , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Glicosaminoglicanos/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Hipóxia/etiologia , Hipóxia/fisiopatologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pesquisa Translacional Biomédica
14.
Tissue Eng Part A ; 22(13-14): 917-27, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27268956

RESUMO

Tissue engineering approaches using growth factor-functionalized acellular scaffolds to support and guide repair driven by endogenous cells are thought to require a careful balance between cell recruitment and growth factor release kinetics. The objective of this study was to identify a growth factor combination that accelerates progenitor cell migration into self-assembling peptide hydrogels in the context of cartilage defect repair. A novel 3D gel-to-gel migration assay enabled quantification of the chemotactic impact of platelet-derived growth factor-BB (PDGF-BB), heparin-binding insulin-like growth factor-1 (HB-IGF-1), and transforming growth factor-ß1 (TGF-ß1) on progenitor cells derived from subchondral bovine trabecular bone (bone-marrow progenitor cells, BM-PCs) encapsulated in the peptide hydrogel [KLDL]3. Only the combination of PDGF-BB and TGF-ß1 stimulated significant migration of BM-PCs over a 4-day period, measured by confocal microscopy. Both PDGF-BB and TGF-ß1 were slowly released from the gel, as measured using their (125)I-labeled forms, and they remained significantly present in the gel at 4 days. In the context of augmenting microfracture surgery for cartilage repair, our strategy of delivering chemotactic and proanabolic growth factors in KLD may provide the necessary local stimulus to help increase defect cellularity, providing more cells to generate repair tissue.


Assuntos
Células da Medula Óssea/metabolismo , Movimento Celular/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Células-Tronco/metabolismo , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/farmacologia , Animais , Becaplermina , Células da Medula Óssea/citologia , Bovinos , Células-Tronco/citologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-28966873

RESUMO

Solid stress and tissue stiffness affect tumour growth, invasion, metastasis and treatment. Unlike stiffness, which can be precisely mapped in tumours, the measurement of solid stresses is challenging. Here, we show that two-dimensional spatial mappings of solid stress and the resulting elastic energy in excised or in situ tumours with arbitrary shapes and wide size ranges can be obtained via three distinct and quantitative techniques that rely on the measurement of tissue displacement after disruption of the confining structures. Application of these methods in models of primary tumours and metastasis revealed that: (i) solid stress depends on both cancer cells and their microenvironment; (ii) solid stress increases with tumour size; and (iii) mechanical confinement by the surrounding tissue significantly contributes to intratumoural solid stress. Further study of the genesis and consequences of solid stress, facilitated by the engineering principles presented here, may lead to significant discoveries and new therapies.

16.
Bioeng Transl Med ; 1(3): 347-356, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28584879

RESUMO

The efficient transport of biological therapeutic materials to target tissues within the body is critical to their efficacy. In cartilage tissue, the lack of blood vessels prevents the entry of systemically administered drugs at therapeutic levels. Within the articulating joint complex, the dense and highly charged extracellular matrix (ECM) hinders the transport of locally administered therapeutic molecules. Consequently, cartilage injury is difficult to treat and frequently results in debilitating osteoarthritis. Here we show a generalizable approach in which the electrostatic assembly of synthetic polypeptides and a protein, insulin-like growth factor-1 (IGF-1), can be used as an early interventional therapy to treat injury to the cartilage. We demonstrated that poly(glutamic acid) and poly(arginine) associated with the IGF-1 via electrostatic interactions, forming a net charged nanoscale polyelectrolyte complex (nanoplex). We observed that the nanoplex diffused into cartilage plugs in vitro and stimulated ECM production. In vivo, we monitored the transport, retention and therapeutic efficacy of the nanoplex in an established rat model of cartilage injury. A single therapeutic dose, when administered within 48 hours of the injury, conferred protection against cartilage degradation and controlled interleukin-1 (IL-1) mediated inflammation. IGF-1 contained in the nanoplex was detected in the joint space for up to 4 weeks following administration and retained bioactivity. The results indicate the potential of this approach as an early intervention therapy following joint injury to delay or even entirely prevent the onset of osteoarthritis.

17.
Acta Orthop ; 86(5): 605-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25854533

RESUMO

BACKGROUND AND PURPOSE: T1ρ or T2 relaxation imaging has been increasingly used to evaluate the cartilage of the knee. We investigated the cartilage of ACL-reconstructed knees 3 years after surgery using T2 relaxation times. PATIENTS AND METHODS: 10 patients with a clinically successful unilateral ACL reconstruction were examined 3 years after surgery. Multiple-TE fast-spin echo sagittal images of both knees were acquired using a 3T MRI scanner for T2 mapping of the tibiofemoral cartilage. T2 values of the superficial and deep zones of the tibiofemoral cartilage were analyzed in sub-compartmental areas and compared between the ACL-reconstructed and uninjured contralateral knees. RESULTS: Higher T2 values were observed in 1 or more sub-compartmental areas of each ACL-reconstructed knee compared to the uninjured contralateral side. Most of the T2 increases were observed at the superficial zones of the cartilage, especially at the medial compartment. At the medial compartment of the ACL-reconstructed knee, the T2 values of the femoral and tibial cartilage were increased by 3-81% compared to the uninjured contralateral side, at the superficial zones of the weight-bearing areas. T2 values in the superficial zone of the central medial femoral condyle differed between the 2 groups (p = 0.002). INTERPRETATION: The articular cartilage of ACL-reconstructed knees, although clinically satisfactory, had higher T2 values in the superficial zone of the central medial femoral condyle than in the uninjured contralateral side 3 years after surgery. Further studies are warranted to determine whether these patients would undergo cartilage degeneration over time.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Cartilagem Articular/patologia , Articulação do Joelho/patologia , Adulto , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
18.
Tissue Eng Part A ; 21(3-4): 637-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25231349

RESUMO

Heparin-binding insulin-like growth factor 1 (HB-IGF-1) is a fusion protein of IGF-1 with the HB domain of heparin-binding epidermal growth factor-like growth factor. A single dose of HB-IGF-1 has been shown to bind specifically to cartilage and to promote sustained upregulation of proteoglycan synthesis in cartilage explants. Achieving strong integration between native cartilage and tissue-engineered cartilage remains challenging. We hypothesize that if a growth factor delivered by the tissue engineering scaffold could stimulate enhanced matrix synthesis by both the cells within the scaffold and the adjacent native cartilage, integration could be enhanced. In this work, we investigated methods for adsorbing HB-IGF-1 to self-assembling peptide hydrogels to deliver the growth factor to encapsulated chondrocytes and cartilage explants cultured with growth factor-loaded hydrogels. We tested multiple methods for adsorbing HB-IGF-1 in self-assembling peptide hydrogels, including adsorption prior to peptide assembly, following peptide assembly, and with/without heparan sulfate (HS, a potential linker between peptide molecules and HB-IGF-1). We found that HB-IGF-1 and HS were retained in the peptide for all tested conditions. A subset of these conditions was then studied for their ability to stimulate increased matrix production by gel-encapsulated chondrocytes and by chondrocytes within adjacent native cartilage. Adsorbing HB-IGF-1 or IGF-1 prior to peptide assembly was found to stimulate increased sulfated glycosaminoglycan per DNA and hydroxyproline content of chondrocyte-seeded hydrogels compared with basal controls at day 10. Cartilage explants cultured adjacent to functionalized hydrogels had increased proteoglycan synthesis at day 10 when HB-IGF-1 was adsorbed, but not IGF-1. We conclude that delivery of HB-IGF-1 to focal defects in cartilage using self-assembling peptide hydrogels is a promising technique that could aid cartilage repair via enhanced matrix production and integration with native tissue.


Assuntos
Condrócitos/citologia , Condrócitos/fisiologia , Preparações de Ação Retardada/química , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/administração & dosagem , Fator de Crescimento Insulin-Like I/administração & dosagem , Peptídeos/química , Adsorção , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Condrócitos/efeitos dos fármacos , Cristalização/métodos , Preparações de Ação Retardada/administração & dosagem , Difusão , Desenho de Fármacos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/química , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Hidrogéis/síntese química , Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/genética , Teste de Materiais , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
19.
J Biomech ; 48(1): 171-5, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25468666

RESUMO

Dynamic nanomechanical properties of bovine bone marrow stromal cells (BMSCs) and their newly synthesized cartilage-like matrices were studied at nanometer scale deformation amplitudes. The increase in their dynamic modulus, |E(*)| (e.g., 2.4±0.4 kPa at 1 Hz to 9.7±0.2 kPa at 316 Hz at day 21, mean±SEM), and phase angle, δ, (e.g., 15±2° at 1 Hz to 74±1° at 316 Hz at day 21) with increasing frequency were attributed to the fluid flow induced poroelasticity, governed by both the newly synthesized matrix and the intracellular structures. The absence of culture duration dependence suggested that chondrogenesis of BMSCs had not yet resulted in the formation of a well-organized matrix with a hierarchical structure similar to cartilage. BMSC-matrix composites demonstrated different poro-viscoelastic frequency-dependent mechanical behavior and energy dissipation compared to chondrocyte-matrix composites due to differences in matrix molecular constituents, structure and cell properties. This study provides important insights into the design of optimal protocols for tissue-engineered cartilage products using chondrocytes and BMSCs.


Assuntos
Cartilagem/fisiologia , Diferenciação Celular , Condrócitos/fisiologia , Condrogênese , Células-Tronco Mesenquimais/fisiologia , Animais , Fenômenos Biomecânicos , Bovinos , Células Cultivadas , Condrócitos/citologia , Matriz Extracelular/fisiologia , Microscopia de Força Atômica , Engenharia Tecidual
20.
J Bone Joint Surg Am ; 96(19): 1601-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274785

RESUMO

BACKGROUND: The goal of this study was to test the ability of an injectable self-assembling peptide (KLD) hydrogel, with or without microfracture, to augment articular cartilage defect repair in an equine cartilage defect model involving strenuous exercise. METHODS: Defects 15 mm in diameter were created on the medial trochlear ridge and debrided down to the subchondral bone. Four treatment groups (n = 8 each) were tested: no treatment (empty defect), only defect filling with KLD, only microfracture, and microfracture followed by filling with KLD. Horses were given strenuous exercise throughout the one-year study. Evaluations included lameness, arthroscopy, radiography, and gross, histologic, immunohistochemical, biochemical, and biomechanical analyses. RESULTS: Overall, KLD-only treatment of defects provided improvement in clinical symptoms and improved filling compared with no treatment, and KLD-only treatment protected against radiographic changes compared with microfracture treatment. Defect treatment with only microfracture also resulted in improved clinical symptoms compared with no treatment, and microfracture treatment resulted in repair tissue containing greater amounts of aggrecan and type-II collagen compared with KLD-only treatment. Microfracture treatment also protected against synovial fibrosis compared with no treatment and KLD-only treatment. Treatment with the self-assembling KLD peptide in combination with microfracture resulted in no additional improvements over microfracture-only treatment. In general, the nature of the predominant tissue in the defects was a mix of noncartilaginous and fibrocartilage tissue, with no significant differences among the treatments. CONCLUSIONS: Treatment of defects with only KLD or with only microfracture resulted in an improvement in clinical symptoms compared with no treatment; the improvement likely resulted from different causes depending on the treatment. Whereas microfracture improved the quality of repair tissue, KLD improved the amount of filling and protected against radiographic changes. CLINICAL RELEVANCE: Treatment of defects with only microfracture and with KLD only resulted in clinical improvements compared with untreated defects, despite differing with respect to the structural improvements that they induced.


Assuntos
Cartilagem Articular/lesões , Procedimentos Ortopédicos/métodos , Peptídeos/uso terapêutico , Animais , Artroscopia , Fenômenos Biomecânicos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Modelos Animais de Doenças , Cães , Cavalos , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Radiografia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA