Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Med Dir Assoc ; 20(1): 35-42, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108034

RESUMO

OBJECTIVES: Short successive periods of skeletal muscle disuse have been suggested to substantially contribute to the observed loss of skeletal muscle mass over the life span. Hospitalization of older individuals due to acute illness, injury, or major surgery generally results in a mean hospital stay of 5 to 7 days, during which the level of physical activity is strongly reduced. We hypothesized that hospitalization following elective total hip arthroplasty is accompanied by substantial leg muscle atrophy in older men and women. DESIGN AND PARTICIPANTS: Twenty-six older patients (75 ± 1 years) undergoing elective total hip arthroplasty participated in this observational study. MEASUREMENTS: On hospital admission and on the day of discharge, computed tomographic (CT) scans were performed to assess muscle cross-sectional area (CSA) of both legs. During surgery and on the day of hospital discharge, a skeletal muscle biopsy was taken from the m. vastus lateralis of the operated leg to assess muscle fiber type-specific CSA. RESULTS: An average of 5.6 ± 0.3 days of hospitalization resulted in a significant decline in quadriceps (-3.4% ± 1.0%) and thigh muscle CSA (-4.2% ± 1.1%) in the nonoperated leg (P < .05). Edema resulted in a 10.3% ± 1.7% increase in leg CSA in the operated leg (P < .05). At hospital admission, muscle fiber CSA was smaller in the type II vs type I fibers (3326 ± 253 µm2 vs 4075 ± 279 µm2, respectively; P < .05). During hospitalization, type I and II muscle fiber CSA tended to increase, likely due to edema in the operated leg (P = .10). CONCLUSIONS: Six days of hospitalization following elective total hip arthroplasty leads to substantial leg muscle atrophy in older patients. Effective intervention strategies are warranted to prevent the loss of muscle mass induced by short periods of muscle disuse during hospitalization.


Assuntos
Artroplastia de Quadril , Hospitalização , Tempo de Internação/estatística & dados numéricos , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Atrofia Muscular/fisiopatologia , Idoso , Procedimentos Cirúrgicos Eletivos , Feminino , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Atrofia Muscular/diagnóstico por imagem , Fatores de Risco , Tomografia Computadorizada por Raios X
2.
J Appl Physiol (1985) ; 125(4): 1266-1276, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091667

RESUMO

Skeletal muscle function in patients with heart failure and reduced ejection fraction (HFrEF) greatly determines exercise capacity. However, reports on skeletal muscle fiber dimensions, fiber capillarization, and their physiological importance are inconsistent. Twenty-five moderately impaired patients with HFrEF and 25 healthy control (HC) subjects underwent muscle biopsy sampling. Type I and type II muscle fiber characteristics were determined by immunohistochemistry. In patients with HFrEF, enzymatic oxidative capacity was assessed, and pulmonary oxygen uptake (V̇o2) and skeletal muscle oxygenation during maximal and moderate-intensity exercise were measured using near-infrared spectroscopy. While muscle fiber cross-sectional area (CSA) was not different between patients with HFrEF and HC, the percentage of type I fibers was higher in HC (46 ± 15 vs. 37 ± 12%, respectively, P = 0.041). Fiber type distribution and CSA were not different between patients in New York Heart Association (NYHA) class II and III. Type I muscle fiber capillarization was higher in HFrEF compared with HC[capillary-to-fiber perimeter exchange (CFPE) index: 5.70 ± 0.92 vs. 5.05 ± 0.82, respectively, P = 0.027]. Patients in NYHA class III had slower V̇o2 and muscle deoxygenation kinetics during onset of exercise and lower muscle oxidative capacity than those in class II (P < 0.05). Also, fiber capillarization was lower but not compared with HC. Higher CFPE index was related to faster deoxygenation (rspearman = -0.682, P = 0.001), however, not to muscle oxidative capacity (r = -0.282, P = 0.216). Type I muscle fiber capillarization is higher in HFrEF compared with HC but not in patients with greater exercise impairment. Greater capillarization may positively affect V̇o2 kinetics by enhancing muscle oxygen diffusion.NEW & NOTEWORTHY The skeletal myopathy of chronic heart failure (HF) includes a greater percentage of fatigable type II fibers and, for less impaired patients, greater skeletal muscle fiber capillarization. Near-infrared spectroscopy measurements of skeletal muscle oxygenation indicate that greater capillarization may compensate for reduced blood flow in mild HF by enhancing the diffusive capacity of skeletal muscle. This thereby augments and speeds oxygen extraction during contractions, which is translated into faster pulmonary oxygen uptake kinetics.

3.
J Clin Endocrinol Metab ; 101(11): 3978-3988, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27745529

RESUMO

CONTEXT: Skeletal muscle protein synthesis is highly responsive to food intake. It has been suggested that the postprandial increase in circulating insulin modulates the muscle protein synthetic response to feeding. OBJECTIVE: The objective of the study was to investigate whether a greater postprandial rise in circulating insulin level increases amino acid uptake in muscle and augments postprandial muscle protein synthesis rates. PARTICIPANTS AND DESIGN: Forty-eight healthy young (age 22 ± 1 y; body mass index 22.0 ± 0.3 kg/m2) and older males (age 68 ± 1 y; body mass index 26.3 ± 0.4 kg/m2) ingested 20 g intrinsically L-[1-13C]-leucine- and L-[1-13C]-phenylalanine-labeled casein protein with or without local insulin infusion. Primed continuous infusions of L-[1-13C]-leucine and L-[ring-2H5]-phenylalanine were applied, with arterial and venous blood samples and muscle biopsies being collected during a 5-hour postprandial period. RESULTS: Insulin administration did not increase overall leg blood flow (P = .509) but increased amino acid uptake over the leg in both young and older subjects (P = .003). The greater amino acid uptake over the leg did not further increase postprandial muscle protein synthesis rates (0.050% ± 0.006% and 0.037% ± 0.004% per hour vs 0.044% ± 0.004% and 0.037% ± 0.002% per hour in the insulin-stimulated vs control condition in the young and older groups, respectively; P = .804) and did not affect postprandial deposition of dietary protein-derived amino acids in de novo muscle protein (P = .872). CONCLUSION: Greater postprandial plasma insulin availability stimulates amino acid uptake over the leg but does not further augment postprandial muscle protein synthesis rates or stimulate the postprandial deposition of protein derived amino acids into de novo muscle protein in healthy young and older men.


Assuntos
Absorção Fisiológica , Envelhecimento , Aminoácidos/metabolismo , Insulina/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Regulação para Cima , Absorção Fisiológica/efeitos dos fármacos , Adulto , Idoso , Aminoácidos/sangue , Biópsia , Isótopos de Carbono , Caseínas/metabolismo , Artéria Femoral , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/sangue , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Infusões Intra-Arteriais , Insulina/administração & dosagem , Insulina/sangue , Insulina/farmacologia , Cinética , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Período Pós-Prandial , Músculo Quadríceps , Fluxo Sanguíneo Regional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
4.
PLoS One ; 10(11): e0141582, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26556791

RESUMO

BACKGROUND: Protein turnover in skeletal muscle tissue is highly responsive to nutrient intake in healthy adults. OBJECTIVE: To provide a comprehensive overview of post-prandial protein handling, ranging from dietary protein digestion and amino acid absorption, the uptake of dietary protein derived amino acids over the leg, the post-prandial stimulation of muscle protein synthesis rates, to the incorporation of dietary protein derived amino acids in de novo muscle protein. DESIGN: 12 healthy young males ingested 20 g intrinsically [1-13C]-phenylalanine labeled protein. In addition, primed continuous L-[ring-2H5]-phenylalanine, L-[ring-2H2]-tyrosine, and L-[1-13C]-leucine infusions were applied, with frequent collection of arterial and venous blood samples, and muscle biopsies throughout a 5 h post-prandial period. Dietary protein digestion, amino acid absorption, splanchnic amino acid extraction, amino acid uptake over the leg, and subsequent muscle protein synthesis were measured within a single in vivo human experiment. RESULTS: 55.3±2.7% of the protein-derived phenylalanine was released in the circulation during the 5 h post-prandial period. The post-prandial rise in plasma essential amino acid availability improved leg muscle protein balance (from -291±72 to 103±66 µM·min-1·100 mL leg volume-1; P<0.001). Muscle protein synthesis rates increased significantly following protein ingestion (0.029±0.002 vs 0.044±0.004%·h-1 based upon the muscle protein bound L-[ring-2H5]-phenylalanine enrichments (P<0.01)), with substantial incorporation of dietary protein derived L-[1-13C]-phenylalanine into de novo muscle protein (from 0 to 0.0201±0.0025 MPE). CONCLUSION: Ingestion of a single meal-like amount of protein allows ~55% of the protein derived amino acids to become available in the circulation, thereby improving whole-body and leg protein balance. About 20% of the dietary protein derived amino acids released in the circulation are taken up in skeletal muscle tissue following protein ingestion, thereby stimulating muscle protein synthesis rates and providing precursors for de novo muscle protein synthesis. TRIAL REGISTRATION: trialregister.nl 3638.


Assuntos
Aminoácidos/farmacocinética , Proteínas Alimentares/farmacocinética , Músculo Esquelético/metabolismo , Período Pós-Prandial , Adulto , Aminoácidos/sangue , Biópsia , Glicemia/análise , Isótopos de Carbono/análise , Caseínas/farmacocinética , Artéria Femoral , Veia Femoral , Humanos , Verde de Indocianina/farmacocinética , Insulina/sangue , Absorção Intestinal , Perna (Membro) , Leucina/sangue , Leucina/farmacocinética , Masculino , Proteínas Musculares/biossíntese , Músculo Esquelético/anatomia & histologia , Especificidade de Órgãos , Fenilalanina/sangue , Fenilalanina/farmacocinética , Adulto Jovem
5.
Age (Dordr) ; 35(6): 2389-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23529503

RESUMO

Aging is associated with a progressive decline in skeletal muscle mass. It has been hypothesized that an attenuated muscle protein synthetic response to the main anabolic stimuli may contribute to the age-related loss of muscle tissue. The aim of the present study was to compare the muscle protein synthetic response following ingestion of a meal-like amount of dietary protein plus carbohydrate between healthy young and older men. Twelve young (21 ± 1 years) and 12 older (75 ± 1 years) men consumed 20 g of intrinsically L-[1-(13)C]phenylalanine-labeled protein with 40 g of carbohydrate. Ingestion of specifically produced intrinsically L-[1-(13)C]phenylalanine-labeled protein allowed us to assess the subsequent incorporation of casein-derived amino acids into muscle protein. Blood samples were collected at regular intervals, with muscle biopsies obtained prior to and 2 and 6 h after protein plus carbohydrate ingestion. The acute post-prandial rise in plasma glucose and insulin concentrations was significantly greater in the older compared with the younger males. Plasma amino acid concentrations increased rapidly following drink ingestion in both groups. However, plasma leucine concentrations were significantly lower at t = 90 min in the older when compared with the young group (P < 0.05). Muscle protein-bound L-[1-(13)C]phenylalanine enrichments increased to 0.0071 ± 0.0016 and 0.0072 ± 0.0013 mole percent excess (MPE) at 2 h and 0.0229 ± 0.0016 and 0.0213 ± 0.0024 MPE at 6 h following ingestion of the intrinsically labeled protein in the young and older males, respectively, with no differences between groups (P > 0.05). We conclude that the use of dietary protein-derived amino acids for muscle protein synthesis is not impaired in healthy older men following intake of protein plus carbohydrate.


Assuntos
Envelhecimento/metabolismo , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Metabolismo Energético/fisiologia , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Idoso , Aminoácidos/sangue , Biópsia , Relação Dose-Resposta a Droga , Humanos , Masculino , Contração Muscular , Músculo Esquelético/citologia , Período Pós-Prandial , Valores de Referência , Sarcopenia/dietoterapia , Sarcopenia/metabolismo , Sarcopenia/fisiopatologia , Adulto Jovem
6.
Exp Gerontol ; 48(5): 492-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23425621

RESUMO

BACKGROUND: The loss of skeletal muscle mass with aging has been attributed to a decline in muscle fiber number and muscle fiber size. OBJECTIVE: To define to what extent differences in leg muscle cross-sectional area (CSA) between young and elderly men are attributed to differences in muscle fiber size. METHODS: Quadriceps muscle CSA and type I and type II muscle fiber size were measured in healthy young (n=25; 23 ± 1 y) and older (n=26; 71 ± 1 y) men. Subsequently, the older subjects performed 6 months of resistance type exercise training, after which measurements were repeated. Differences in quadriceps muscle CSA were compared with differences in type I and type II muscle fiber size. RESULTS: Quadriceps CSA was substantially smaller in older versus young men (68 ± 2 vs 80 ± 2 cm(2), respectively; P<0.001). Type II muscle fiber size was substantially smaller in the elderly vs the young (29%; P<0.001), with a tendency of smaller type I muscle fibers (P=0.052). Differences in type II muscle fiber size fully explained differences in quadriceps CSA between groups. Prolonged resistance type exercise training in the elderly increased type II muscle fiber size by 24 ± 8% (P<0.01), explaining 100 ± 3% of the increase in quadriceps muscle CSA (from 68 ± 2 to 74 ± 2 cm(2)). CONCLUSION: Reduced muscle mass with aging is mainly attributed to smaller type II muscle fiber size and, as such, is unlikely accompanied by substantial muscle fiber loss. In line, the increase in muscle mass following prolonged resistance type exercise training can be attributed entirely to specific type II muscle fiber hypertrophy.


Assuntos
Envelhecimento/patologia , Fibras Musculares de Contração Rápida/patologia , Músculo Quadríceps/patologia , Sarcopenia/patologia , Absorciometria de Fóton/métodos , Idoso , Envelhecimento/fisiologia , Biópsia , Humanos , Hipertrofia/patologia , Masculino , Fibras Musculares de Contração Rápida/diagnóstico por imagem , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/diagnóstico por imagem , Fibras Musculares de Contração Lenta/patologia , Fibras Musculares de Contração Lenta/fisiologia , Força Muscular/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiopatologia , Treinamento Resistido , Sarcopenia/diagnóstico por imagem , Sarcopenia/reabilitação , Tomografia Computadorizada por Raios X , Adulto Jovem
7.
J Appl Physiol (1985) ; 113(6): 896-902, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22815390

RESUMO

We aimed to assess the reliability of the single biopsy approach for calculating muscle protein synthesis rates compared with the well described sequential muscle biopsy approach following a primed continuous infusion of L-[ring-(2)H(5)]phenylalanine and GC-MS analysis in older men. Two separate experimental infusion protocols, with differing stable isotope amino acid incorporation times, were employed consisting of n = 27 (experiment 1) or n = 9 (experiment 2). Specifically, mixed muscle protein FSR were calculated from baseline plasma protein enrichments and muscle protein enrichments obtained at 90 min or 50 min (1BX SHORT), 210 min or 170 min (1BX LONG), and between the muscle protein enrichments obtained at 90 and 210 min or 50 min and 170 min (2BX) of the infusion for experiments 1 and 2, respectively. In experiment 2, we also assessed the error that is introduced to the single muscle biopsy approach when nontracer naive subjects are recruited for participation in a primed continuous infusion of isotope-labeled amino acids. In experiment 1, applying the individual plasma protein enrichment values to the single muscle biopsy approach resulted in no differences in muscle protein FSR between the 1BX SHORT (0.031 ± 0.003%·h(-1)), 1BX LONG (0.032 ± 0.002%·h(-1)), or the 2BX approach (0.034 ± 0.002%·h(-1)). A significant correlation in muscle protein FSR was observed only between the 1BX LONG and 2BX approach (r = 0.8; P < 0.001). Similar results were observed in experiment 2. In addition, using the single biopsy approach in nontracer naïve state results in a muscle protein FSR that is negative for both the 1BX SHORT (-0.67 ± 0.051%·h(-1)) and 1BX LONG (-0.19 ± 0.051%·h(-1)) approaches. This is the first study to demonstrate that the single biopsy approach, coupled with the background enrichment of L-[ring-(2)H(5)]-phenylalanine of mixed plasma proteins, generates data that are similar to using the sequential muscle biopsy approach in the elderly population.


Assuntos
Biópsia/métodos , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Fatores Etários , Idoso , Proteínas Sanguíneas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Infusões Intravenosas , Marcação por Isótopo , Cinética , Masculino , Fenilalanina/administração & dosagem , Fenilalanina/metabolismo , Reprodutibilidade dos Testes
8.
Metabolism ; 61(7): 931-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22209666

RESUMO

It has recently been proposed that basal muscle protein synthesis can be effectively assessed by measuring the background enrichment in total plasma protein, thereby omitting the initial biopsy, and determining the difference in enrichment from a single muscle biopsy obtained during a primed continuous infusion of isotope-labeled amino acids. We determined the reliability of calculating basal mixed muscle protein fractional synthetic rates (FSRs) from mixed plasma proteins and a single muscle biopsy compared against the sequential muscle biopsy approach. Ten men (age, 23 ± 1 years; body mass index, 22 ± 1 kg∙m(-2)) received muscle biopsies of the vastus lateralis after 2 and 4 hours of a primed continuous infusion of l-[ring-(13)C(6)]phenylalanine. Mixed muscle protein FSR was calculated from baseline plasma enrichments and muscle protein enrichments determined from the biopsy at 2 hours (1BX SHORT) or 4 hours (1BX LONG), or between muscle protein enrichments at 2 and 4 hours (2BX) of the infusion. No differences (P = .50) were observed in mixed muscle protein FSR, using plasma [ring-(13)C(6)]phenylalanine enrichments as the precursor, between the 1BX SHORT (0.031% ± 0.010%∙h(-1)), 1BX LONG (0.032% ± 0.007%∙h(-1)), or 2BX (0.035% ± 0.011%∙h(-1)) approach. A significant correlation was observed between the calculated muscle protein FSR assessed using the 1BX LONG and 2BX approach (r = 0.7, P = .02). Our data demonstrate that the single-biopsy approach, irrespective of whether the biopsy is obtained at 2 or 4 hours, can be used as a surrogate for the sequential-biopsy approach to determine basal muscle protein synthesis in a group.


Assuntos
Biópsia/métodos , Proteínas Musculares/biossíntese , Adulto , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Humanos , Marcação por Isótopo , Masculino , Fenilalanina/metabolismo , Músculo Quadríceps/metabolismo , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA