Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(22): R1465-R1466, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34813747

RESUMO

The community of plant-feeding insects (herbivores) that specialize on milkweeds (Apocynaceae) form a remarkable example of convergent evolution across levels of biological organization1. In response to toxic cardiac glycosides produced by these plants, the monarch butterfly (Danaus plexippus) and other specialist herbivores have evolved parallel substitutions in the alpha subunit (ATPA) of the Na+/K+-ATPase. These substitutions render the pump insensitive to cardiac glycosides2,3, allowing the monarch and other specialists, from aphids to beetles, to sequester cardiac glycosides, which in turn provide defense against attacks by enemies from the third trophic level4. The evolution of 'target-site-insensitivity' substitutions in these herbivores poses a fundamental biological question: have predators and parasitoids that feed on cardiac-glycoside-sequestering insects also evolved Na+/K+-ATPases that are similarly insensitive to cardiac glycosides (as predicted by Whiteman and Mooney)5? In other words, can plant toxins cause evolutionary cascades that reach the third trophic level? Here we show that at least four enemies of the monarch and other milkweed herbivores have indeed evolved amino-acid substitutions associated with target-site insensitivity to cardiac glycosides. These attackers represent four major animal clades, implicating cardiac glycosides as keystone molecules6 and establishing ATPalpha, which encodes ATPA, as a keystone gene with effects that reverberate within ecological communities7.


Assuntos
Asclepias , Borboletas , Glicosídeos Cardíacos , Parasitos , Animais , Asclepias/genética , Asclepias/parasitologia , Borboletas/genética , Cardenolídeos/toxicidade , Herbivoria , Insetos , Plantas , ATPase Trocadora de Sódio-Potássio/genética
2.
Mol Plant Pathol ; 22(9): 1082-1091, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156752

RESUMO

Many aphid-vectored viruses are transmitted nonpersistently via transient attachment of virus particles to aphid mouthparts and are most effectively acquired or transmitted during brief stylet punctures of epidermal cells. In Arabidopsis thaliana, the aphid-transmitted virus cucumber mosaic virus (CMV) induces feeding deterrence against the polyphagous aphid Myzus persicae. This form of resistance inhibits prolonged phloem feeding but promotes virus acquisition by aphids because it encourages probing of plant epidermal cells. When aphids are confined on CMV-infected plants, feeding deterrence reduces their growth and reproduction. We found that CMV-induced inhibition of growth as well as CMV-induced inhibition of reproduction of M. persicae are dependent upon jasmonate-mediated signalling. BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor enabling detection of microbe-associated molecular patterns and induction of pattern-triggered immunity (PTI). In plants carrying the mutant bak1-5 allele, CMV induced inhibition of M. persicae reproduction but not inhibition of aphid growth. We conclude that in wildtype plants CMV induces two mechanisms that diminish performance of M. persicae: a jasmonate-dependent and PTI-dependent mechanism that inhibits aphid growth, and a jasmonate-dependent, PTI-independent mechanism that inhibits reproduction. The growth of two crucifer specialist aphids, Lipaphis erysimi and Brevicoryne brassicae, was not affected when confined on CMV-infected A. thaliana. However, B. brassicae reproduction was inhibited on CMV-infected plants. This suggests that in A. thaliana CMV-induced resistance to aphids, which is thought to incentivize virus vectoring, has greater effects on polyphagous than on crucifer specialist aphids.


Assuntos
Afídeos , Proteínas de Arabidopsis/metabolismo , Arabidopsis , Cucumovirus , Doenças das Plantas/virologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Arabidopsis/virologia , Cucumovirus/patogenicidade , Ciclopentanos , Oxilipinas
3.
Nature ; 574(7778): 409-412, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578524

RESUMO

Identifying the genetic mechanisms of adaptation requires the elucidation of links between the evolution of DNA sequence, phenotype, and fitness1. Convergent evolution can be used as a guide to identify candidate mutations that underlie adaptive traits2-4, and new genome editing technology is facilitating functional validation of these mutations in whole organisms1,5. We combined these approaches to study a classic case of convergence in insects from six orders, including the monarch butterfly (Danaus plexippus), that have independently evolved to colonize plants that produce cardiac glycoside toxins6-11. Many of these insects evolved parallel amino acid substitutions in the α-subunit (ATPα) of the sodium pump (Na+/K+-ATPase)7-11, the physiological target of cardiac glycosides12. Here we describe mutational paths involving three repeatedly changing amino acid sites (111, 119 and 122) in ATPα that are associated with cardiac glycoside specialization13,14. We then performed CRISPR-Cas9 base editing on the native Atpα gene in Drosophila melanogaster flies and retraced the mutational path taken across the monarch lineage11,15. We show in vivo, in vitro and in silico that the path conferred resistance and target-site insensitivity to cardiac glycosides16, culminating in triple mutant 'monarch flies' that were as insensitive to cardiac glycosides as monarch butterflies. 'Monarch flies' retained small amounts of cardiac glycosides through metamorphosis, a trait that has been optimized in monarch butterflies to deter predators17-19. The order in which the substitutions evolved was explained by amelioration of antagonistic pleiotropy through epistasis13,14,20-22. Our study illuminates how the monarch butterfly evolved resistance to a class of plant toxins, eventually becoming unpalatable, and changing the nature of species interactions within ecological communities2,6-11,15,17-19.


Assuntos
Borboletas/genética , Resistência a Medicamentos/genética , Evolução Molecular , Edição de Genes , Genoma de Inseto/genética , Animais , Borboletas/efeitos dos fármacos , Drosophila melanogaster/genética , Mutação , ATPase Trocadora de Sódio-Potássio/genética , Toxinas Biológicas/toxicidade
4.
Virol J ; 14(1): 91, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28468686

RESUMO

BACKGROUND: Aphids, including the generalist herbivore Myzus persicae, transmit cucumber mosaic virus (CMV). CMV (strain Fny) infection affects M. persicae feeding behavior and performance on tobacco (Nicotiana tabacum), Arabidopsis thaliana and cucurbits in varying ways. In Arabidopsis and cucurbits, CMV decreases host quality and inhibits prolonged feeding by aphids, which may enhance virus transmission rates. CMV-infected cucurbits also emit deceptive, aphid-attracting volatiles, which may favor virus acquisition. In contrast, aphids on CMV-infected tobacco (cv. Xanthi) exhibit increased survival and reproduction. This may not increase transmission but might increase virus and vector persistence within plant communities. The CMV 2b counter-defense protein diminishes resistance to aphid infestation in CMV-infected tobacco plants. We hypothesised that in tobacco CMV and its 2b protein might also alter the emission of volatile organic compounds that would influence aphid behavior. RESULTS: Analysis of headspace volatiles emitted from tobacco plants showed that CMV infection both increased the total quantity and altered the blend produced. Furthermore, experiments with a CMV 2b gene deletion mutant (CMV∆2b) showed that the 2b counter-defense protein influences volatile emission. Free choice bioassays were conducted where wingless M. persicae could choose to settle on infected or mock-inoculated plants under a normal day/night regime or in continual darkness. Settling was recorded at 15 min, 1 h and 24 h post-release. Statistical analysis indicated that aphids showed no marked preference to settle on mock-inoculated versus infected plants, except for a marginally greater settlement of aphids on mock-inoculated over CMV-infected plants under normal illumination. CONCLUSIONS: CMV infection of tobacco plants induced quantitative and qualitative changes in host volatile emission and these changes depended in part on the activity of the 2b counter-defense protein. However, CMV-induced alterations in tobacco plant volatile emission did not have marked effects on the settling of aphids on infected versus mock-inoculated plants even though CMV-infected plants are higher quality hosts for M. persicae.


Assuntos
Afídeos/virologia , Cucumovirus/fisiologia , Insetos Vetores/virologia , Nicotiana/virologia , Proteínas Virais/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Afídeos/fisiologia , Cucumovirus/genética , Cucumovirus/patogenicidade , Comportamento Alimentar/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Interferência de RNA
5.
Insect Biochem Mol Biol ; 81: 51-61, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28011348

RESUMO

In the struggle against dietary toxins, insects are known to employ target site insensitivity, metabolic detoxification, and transporters that shunt away toxins. Specialized insects across six taxonomic orders feeding on cardenolide-containing plants have convergently evolved target site insensitivity via specific amino acid substitutions in the Na/K-ATPase. Nonetheless, in vitro pharmacological experiments have suggested a role for multidrug transporters (Mdrs) and organic anion transporting polypeptides (Oatps), which may provide a basal level of protection in both specialized and non-adapted insects. Because the genes coding for these proteins are evolutionarily conserved and in vivo genetic evidence in support of this hypothesis is lacking, here we used wildtype and mutant Drosophila melanogaster (Drosophila) in capillary feeder (CAFE) assays to quantify toxicity of three chemically diverse, medically relevant cardenolides. We examined multiple components of fitness, including mortality, longevity, and LD50, and found that, while the three cardenolides each stimulated feeding (i.e., no deterrence to the toxin), all decreased lifespan, with the most apolar cardenolide having the lowest LD50 value. Flies showed a clear non-monotonic dose response and experienced high levels of toxicity at the cardenolide concentration found in plants. At this concentration, both Mdr and Oatp knockout mutant flies died more rapidly than wildtype flies, and the mutants also experienced more adverse neurological effects on high-cardenolide-level diets. Our study further establishes Drosophila as a model for the study of cardenolide pharmacology and solidifies support for the hypothesis that multidrug and organic anion transporters are key players in insect protection against dietary cardenolides.


Assuntos
Cardenolídeos/toxicidade , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Animais , Drosophila melanogaster/metabolismo , Feminino , Masculino
6.
J Chem Ecol ; 40(7): 700-16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24997626

RESUMO

Ethylene is a key hormone in plant development, mediating plant responses to abiotic environmental stress, and interactions with attackers and mutualists. Here, we provide a synthesis of the role of ethylene in the context of plant ecology and evolution, and a prospectus for future research in this area. We focus on the regulatory function of ethylene in multi-organismal interactions. In general, plant interactions with different types of organisms lead to reduced or enhanced levels of ethylene. This in turn affects not only the plant's response to the interacting organism at hand, but also to other organisms in the community. These community-level effects become observable as enhanced or diminished relationships with future commensals, and systemic resistance or susceptibility to secondary attackers. Ongoing comparative genomic and phenotypic analyses continue to shed light on these interactions. These studies have revealed that plants and interacting organisms from separate kingdoms of life have independently evolved the ability to produce, perceive, and respond to ethylene. This signature of convergent evolution of ethylene signaling at the phenotypic level highlights the central role ethylene metabolism and signaling plays in plant interactions with microbes and animals.


Assuntos
Evolução Biológica , Etilenos/metabolismo , Plantas/química , Transdução de Sinais , Animais , Etilenos/biossíntese , Herbivoria , Insetos/fisiologia , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/metabolismo
7.
PLoS One ; 8(12): e83066, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349433

RESUMO

BACKGROUND: Virus-induced deterrence to aphid feeding is believed to promote plant virus transmission by encouraging migration of virus-bearing insects away from infected plants. We investigated the effects of infection by an aphid-transmitted virus, cucumber mosaic virus (CMV), on the interaction of Arabidopsis thaliana, one of the natural hosts for CMV, with Myzus persicae (common names: 'peach-potato aphid', 'green peach aphid'). METHODOLOGY/PRINCIPAL FINDINGS: Infection of Arabidopsis (ecotype Col-0) with CMV strain Fny (Fny-CMV) induced biosynthesis of the aphid feeding-deterrent 4-methoxy-indol-3-yl-methylglucosinolate (4MI3M). 4MI3M inhibited phloem ingestion by aphids and consequently discouraged aphid settling. The CMV 2b protein is a suppressor of antiviral RNA silencing, which has previously been implicated in altering plant-aphid interactions. Its presence in infected hosts enhances the accumulation of CMV and the other four viral proteins. Another viral gene product, the 2a protein (an RNA-dependent RNA polymerase), triggers defensive signaling, leading to increased 4MI3M accumulation. The 2b protein can inhibit ARGONAUTE1 (AGO1), a host factor that both positively-regulates 4MI3M biosynthesis and negatively-regulates accumulation of substance(s) toxic to aphids. However, the 1a replicase protein moderated 2b-mediated inhibition of AGO1, ensuring that aphids were deterred from feeding but not poisoned. The LS strain of CMV did not induce feeding deterrence in Arabidopsis ecotype Col-0. CONCLUSIONS/SIGNIFICANCE: Inhibition of AGO1 by the 2b protein could act as a booby trap since this will trigger antibiosis against aphids. However, for Fny-CMV the interplay of three viral proteins (1a, 2a and 2b) appears to balance the need of the virus to inhibit antiviral silencing, while inducing a mild resistance (antixenosis) that is thought to promote transmission. The strain-specific effects of CMV on Arabidopsis-aphid interactions, and differences between the effects of Fny-CMV on this plant and those seen previously in tobacco (inhibition of resistance to aphids) may have important epidemiological consequences.


Assuntos
Afídeos , Arabidopsis , Cucumovirus/metabolismo , Comportamento Alimentar , Interações Hospedeiro-Parasita , Proteínas Virais/metabolismo , Animais , Afídeos/fisiologia , Afídeos/virologia , Arabidopsis/parasitologia , Arabidopsis/virologia
8.
Plant Cell ; 25(11): 4755-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24285796

RESUMO

Multicellular eukaryotic organisms are attacked by numerous parasites from diverse phyla, often simultaneously or sequentially. An outstanding question in these interactions is how hosts integrate signals induced by the attack of different parasites. We used a model system comprised of the plant host Arabidopsis thaliana, the hemibiotrophic bacterial phytopathogen Pseudomonas syringae, and herbivorous larvae of the moth Trichoplusia ni (cabbage looper) to characterize mechanisms involved in systemic-induced susceptibility (SIS) to T. ni herbivory caused by prior infection by virulent P. syringae. We uncovered a complex multilayered induction mechanism for SIS to herbivory. In this mechanism, antiherbivore defenses that depend on signaling via (1) the jasmonic acid-isoleucine conjugate (JA-Ile) and (2) other octadecanoids are suppressed by microbe-associated molecular pattern-triggered salicylic acid (SA) signaling and infection-triggered ethylene signaling, respectively. SIS to herbivory is, in turn, counteracted by a combination of the bacterial JA-Ile mimic coronatine and type III virulence-associated effectors. Our results show that SIS to herbivory involves more than antagonistic signaling between SA and JA-Ile and provide insight into the unexpectedly complex mechanisms behind a seemingly simple trade-off in plant defense against multiple enemies.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Etilenos/metabolismo , Herbivoria , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Isoleucina/metabolismo , Mariposas , Mutação , Oxilipinas/metabolismo , Folhas de Planta , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Transdução de Sinais
9.
Sci Rep ; 1: 187, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355702

RESUMO

The cucumber mosaic virus (CMV) 2b protein not only inhibits anti-viral RNA silencing but also quenches transcriptional responses of plant genes to jasmonic acid, a key signalling molecule in defence against insects. This suggested that it might affect interactions between infected plants and aphids, insects that transmit CMV. We found that infection of tobacco with a 2b gene deletion mutant (CMVΔ2b) induced strong resistance to aphids (Myzus persicae) while CMV infection fostered aphid survival. Using electrical penetration graph methodology we found that higher proportions of aphids showed sustained phloem ingestion on CMV-infected plants than on CMVΔ2b-infected or mock-inoculated plants although this did not increase the rate of growth of individual aphids. This indicates that while CMV infection or certain viral gene products might elicit aphid resistance, the 2b protein normally counteracts this during a wild-type CMV infection. Our findings suggest that the 2b protein could indirectly affect aphid-mediated virus transmission.


Assuntos
Afídeos/fisiologia , Cucumovirus/genética , Inativação Gênica , Nicotiana/genética , Proteínas Virais/genética , Animais , Comportamento Animal , Cucumovirus/fisiologia , Ciclopentanos/metabolismo , Comportamento Alimentar , Deleção de Genes , Mutação , Nicotina/metabolismo , Oxilipinas/metabolismo , Floema/metabolismo , Doenças das Plantas , RNA Interferente Pequeno/metabolismo , Nicotiana/virologia , Proteínas Virais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA