Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSphere ; 8(2): e0005723, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36853007

RESUMO

The ability to generate a subpopulation of small colony variants (SCVs) is a conserved feature of Pseudomonas aeruginosa and could represent a key adaptive strategy to colonize and persist in multiple niches. However, very little is known about the role of the SCV phenotype, the conditions that promote its emergence, and its possible involvement in an adaptive strategy. In the present work, we investigated the in vitro selective conditions promoting the emergence of SCVs from the prototypical strain PA14, which readily forms SCVs in nonagitated standing cultures. We found that O2 limitation, which causes a redox imbalance, is the main factor selecting for the SCV phenotype, which promotes survival of the population via formation of a biofilm at the air-liquid interface to access the electron acceptor. When this selective pressure is relieved by aeration or supplementation of an alternative electron acceptor, SCVs are barely detectable. We also observed that SCV emergence contributes to redox rebalancing, suggesting that it is involved in an adaptive strategy. We conclude that selection for the SCV phenotype is an adaptive solution adopted by P. aeruginosa to access poorly available O2. IMPORTANCE The bacterium Pseudomonas aeruginosa is an opportunistic pathogen that thrives in many environments. It poses a significant health concern, notably because it is a causative agent of nosocomial infections and the most prevalent pathogen found in the lungs of people with cystic fibrosis. In infected hosts, its persistence is often related to the emergence of an alternative phenotype known as small colony variant (SCV). Identification of conditions selecting for the SCV phenotype contributes to knowledge regarding adaptive mechanisms exploited by P. aeruginosa to survive in multiple niches and persist during infections. Hindering this adaptation strategy could help control persistent P. aeruginosa infections.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Fenótipo , Pulmão , Oxirredução
2.
Elife ; 122023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661299

RESUMO

Interspecies interactions can drive the emergence of unexpected microbial phenotypes that are not observed when studying monocultures. The cystic fibrosis (CF) lung consists of a complex environment where microbes, living as polymicrobial biofilm-like communities, are associated with negative clinical outcomes for persons with CF (pwCF). However, the current lack of in vitro models integrating the microbial diversity observed in the CF airway hampers our understanding of why polymicrobial communities are recalcitrant to therapy in this disease. Here, integrating computational approaches informed by clinical data, we built a mixed community of clinical relevance to the CF lung composed of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica. We developed and validated this model biofilm community with multiple isolates of these four genera. When challenged with tobramycin, a front-line antimicrobial used to treat pwCF, the microorganisms in the polymicrobial community show altered sensitivity to this antibiotic compared to monospecies biofilms. We observed that wild-type P. aeruginosa is sensitized to tobramycin in a mixed community versus monoculture, and this observation holds across a range of community relative abundances. We also report that LasR loss-of-function, a variant frequently detected in the CF airway, drives tolerance of P. aeruginosa to tobramycin specifically in the mixed community. Our data suggest that the molecular basis of this community-specific recalcitrance to tobramycin for the P. aeruginosa lasR mutant is increased production of phenazines. Our work supports the importance of studying a clinically relevant model of polymicrobial biofilms to understand community-specific traits relevant to infections.


Assuntos
Fibrose Cística , Infecções Estafilocócicas , Humanos , Fibrose Cística/complicações , Antibacterianos/farmacologia , Tobramicina/farmacologia , Fenótipo , Pseudomonas aeruginosa/genética , Biofilmes
3.
J Bacteriol ; 204(10): e0018522, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36102640

RESUMO

A subpopulation of small-colony variants (SCVs) is a frequently observed feature of Pseudomonas aeruginosa isolates obtained from colonized cystic fibrosis lungs. Since most SCVs have until now been isolated from clinical samples, it remains unclear how widespread the ability of P. aeruginosa strains to develop this phenotype is and what the genetic mechanism(s) behind the emergence of SCVs are according to the origin of the isolate. In the present work, we investigated the ability of 22 P. aeruginosa isolates from various environmental origins to spontaneously adopt an SCV-like smaller alternative morphotype distinguishable from that of the ancestral parent strain under laboratory culture conditions. We found that all the P. aeruginosa strains tested could adopt an SCV phenotype, regardless of their origin. Whole-genome sequencing of SCVs obtained from clinical and environmental sources revealed single mutations exclusively in two distinct c-di-GMP signaling pathways, the Wsp and YfiBNR pathways. We conclude that the ability to switch to an SCV phenotype is a conserved feature of P. aeruginosa and results from the acquisition of a stable genetic mutation, regardless of the origin of the strain. IMPORTANCE P. aeruginosa is an opportunistic pathogen that thrives in many environments. It poses a significant health concern, notably because this bacterium is the most prevalent pathogen found in the lungs of people with cystic fibrosis. In infected hosts, its persistence is considered related to the emergence of an alternative small-colony-variant (SCV) phenotype. By reporting the distribution of P. aeruginosa SCVs in various nonclinical environments and the involvement of c-di-GMP in SCV emergence from both clinical and environmental strains, this work contributes to understanding a conserved adaptation mechanism used by P. aeruginosa to adapt readily in all environments. Hindering this adaptation strategy could help control persistent infection by P. aeruginosa.


Assuntos
GMP Cíclico , Pseudomonas aeruginosa , Humanos , Fibrose Cística/microbiologia , Mutação , Fenótipo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Infecções por Pseudomonas/microbiologia , GMP Cíclico/análogos & derivados , GMP Cíclico/genética
4.
mSphere ; 7(4): e0015322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862793

RESUMO

Interactions between different bacterial species shape bacterial communities and their environments. The opportunistic pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia both can colonize the lungs of individuals affected by cystic fibrosis. Using the social surface behavior called swarming motility as a study model, we noticed intricate interactions between B. cenocepacia K56-2 and P. aeruginosa PA14. While strain K56-2 does not swarm under P. aeruginosa favorable swarming conditions, co-inoculation with a nonmotile PA14 flagellum-less ΔfliC mutant restored spreading for both strains. We show that P. aeruginosa provides the wetting agent rhamnolipids allowing K56-2 to perform swarming motility, while aflagellated PA14 appears to "hitchhike" along with K56-2 cells in the swarming colony. IMPORTANCE Pseudomonas aeruginosa and Burkholderia cenocepacia are important opportunistic pathogens often found together in the airways of persons with cystic fibrosis. Laboratory cocultures of both species often ends with one taking over the other. We used a surface motility assay to study the social interactions between populations of these bacterial species. Under our conditions, B. cenocepacia cannot swarm without supplementation of the wetting agent produced by P. aeruginosa. In a mixed colony of both species, an aflagellated mutant of P. aeruginosa provides the necessary wetting agent to B. cenocepacia, allowing both bacteria to swarm and colonize a surface. We highlight this peculiar interaction where both bacteria set aside their antagonistic tendencies to travel together.


Assuntos
Burkholderia cenocepacia , Fibrose Cística , Burkholderia cenocepacia/genética , Fibrose Cística/microbiologia , Flagelos , Humanos , Pseudomonas aeruginosa/genética , Agentes Molhantes
5.
Environ Microbiol ; 24(3): 1062-1075, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34488244

RESUMO

The saprophyte Pseudomonas aeruginosa is a versatile opportunistic pathogen causing infections in immunocompromised individuals. To facilitate its adaptation to a large variety of niches, this bacterium exploits population density-dependent gene regulation systems called quorum sensing (QS). In P. aeruginosa, three distinct but interrelated QS systems (las, rhl and pqs) regulate the production of many survival and virulence functions. In prototypical strains, the las system, through its transcriptional regulator LasR, is important for the full activation of the rhl and pqs systems. Still, LasR-deficient isolates have been reported, mostly sampled from the lungs of people with cystic fibrosis, where they are considered selected by the chronic infection environment. In this study, we show that a defect in LasR activity appears to be an actually widespread mechanism of adaptation in this bacterium. Indeed, we found abundant LasR-defective isolates sampled from hydrocarbon-contaminated soils, hospital sink drains and meat/fish market environments, using an approach based on phenotypic profiling, supported by gene sequencing. Interestingly, several LasR-defective isolates maintain an active rhl system or are deficient in pqs system signalling. The high prevalence of a LasR-defective phenotype among environmental P. aeruginosa isolates questions the role of QS in niche adaptation.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/genética , Transativadores/genética , Transativadores/metabolismo
6.
Front Cell Infect Microbiol ; 11: 734296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746024

RESUMO

Pseudomonas aeruginosa and Aspergillus fumigatus infections frequently co-localize in lungs of immunocompromised patients and individuals with cystic fibrosis (CF). The antifungal activity of P. aeruginosa has been described for its filtrates. Pyoverdine and pyocyanin are the principal antifungal P. aeruginosa molecules active against A. fumigatus biofilm metabolism present in iron-limited or iron-replete planktonic P. aeruginosa culture filtrates, respectively. Using various P. aeruginosa laboratory wild-type strains (PA14, PAO1, PAK), we found antifungal activity against Aspergillus colonies on agar. Comparing 36 PA14 and 7 PAO1 mutants, we found that mutants lacking both major siderophores, pyoverdine and pyochelin, display higher antifungal activity on agar than their wild types, while quorum sensing mutants lost antifungal activity. Addition of ferric iron, but not calcium or magnesium, reduced the antifungal effects of P. aeruginosa on agar, whereas iron-poor agar enhanced antifungal effects. Antifungal activity on agar was mediated by PQS and HHQ, via MvfR. Among the MvfR downstream factors, rhamnolipids and elastase were produced in larger quantities by pyoverdine-pyochelin double mutants and showed antifungal activity on agar. In summary, antifungal factors produced by P. aeruginosa on agar differ from those produced by bacteria grown in liquid cultures, are dependent on quorum sensing, and are downregulated by the availability of ferric iron. Rhamnolipids and elastase seem to be major mediators of Pseudomonas' antifungal activity on a solid surface.


Assuntos
Infecções por Pseudomonas , Pseudomonas , Aspergillus , Biofilmes , Humanos , Pseudomonas aeruginosa , Piocianina , Percepção de Quorum
7.
NPJ Biofilms Microbiomes ; 5(1): 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149345

RESUMO

Biofilms are structured microbial communities that are the leading cause of numerous chronic infections which are difficult to eradicate. Within the lungs of individuals with cystic fibrosis (CF), Pseudomonas aeruginosa causes persistent biofilm infection that is commonly treated with aminoglycoside antibiotics such as tobramycin. However, sublethal concentrations of this aminoglycoside were previously shown to increase biofilm formation by P. aeruginosa, but the underlying adaptive mechanisms still remain elusive. Herein, we combined confocal laser scanning microscope analyses, proteomics profiling, gene expression assays and phenotypic studies to unravel P. aeruginosa potential adaptive mechanisms in response to tobramycin exposure during biofilm growth. Under this condition, we show that the modified biofilm architecture is related at least in part to increased extracellular DNA (eDNA) release, most likely as a result of biofilm cell death. Furthermore, the activity of quorum sensing (QS) systems was increased, leading to higher production of QS signaling molecules. We also demonstrate upon tobramycin exposure an increase in expression of the PrrF small regulatory RNAs, as well as expression of iron uptake systems. Remarkably, biofilm biovolumes and eDNA relative abundances in pqs and prrF mutant strains decrease in the presence of tobramycin. Overall, our findings offer experimental evidences for a potential adaptive mechanism linking PrrF sRNAs, QS signaling, biofilm cell death, eDNA release, and tobramycin-enhanced biofilm formation in P. aeruginosa. These specific adaptive mechanisms should be considered to improve treatment strategies against P. aeruginosa biofilm establishment in CF patients' lungs.


Assuntos
Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum , Pequeno RNA não Traduzido/metabolismo , Tobramicina/farmacologia , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Microscopia Confocal , Proteômica , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Estresse Fisiológico
8.
Proc Natl Acad Sci U S A ; 116(14): 7021-7026, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30846553

RESUMO

The opportunistic bacterial pathogen Pseudomonas aeruginosa has a layered acyl-homoserine lactone (AHL) quorum-sensing (QS) system, which controls production of a variety of extracellular metabolites and enzymes. The LasRI system activates genes including those coding for the extracellular protease elastase and for the second AHL QS system, RhlRI. Growth of P. aeruginosa on casein requires elastase production and LasR-mutant social cheats emerge in populations growing on casein. P. aeruginosa colonizes the lungs of individuals with the genetic disease cystic fibrosis (CF), and LasR mutants can be isolated from the colonized lungs; however, unlike laboratory-generated LasR mutants, many of these CF isolates have functioning RhlR-RhlI systems. We show that one such mutant can use the RhlR-RhlI system to activate expression of elastase and grow on casein. We carried out social-evolution experiments by growing this isolate on caseinate and, as with wild-type P. aeruginosa, elastase-negative mutants emerge as cheats, but these are not RhlR mutants; rather, they are mutants that do not produce the non-AHL Pseudomonas quinolone signal (PQS). Furthermore, we generated a RhlRI mutant and showed it had a fitness defect when growing together with the parent. Apparently, RhlR QS and PQS collude to support growth on caseinate in the absence of a functional LasR. Our findings provide a plausible explanation as to why P. aeruginosa LasR mutants, but not RhlR mutants, are common in CF lungs.


Assuntos
Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Transdução de Sinais , Transativadores/metabolismo , Proteínas de Bactérias/genética , Humanos , Pseudomonas aeruginosa/genética , Transativadores/genética
9.
Med Mycol ; 57(Supplement_2): S228-S232, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30816973

RESUMO

In airways of immunocompromised patients and individuals with cystic fibrosis, Pseudomonas aeruginosa and Aspergillus fumigatus are the most common opportunistic bacterial and fungal pathogens. Both pathogens form biofilms and cause acute and chronic illnesses. Previous studies revealed that P. aeruginosa is able to inhibit A. fumigatus biofilms in vitro. While numerous P. aeruginosa molecules have been shown to affect A. fumigatus, there never has been a systematic approach to define the principal causative agent. We studied 24 P. aeruginosa mutants, with deletions in genes important for virulence, iron acquisition, or quorum sensing, for their ability to interfere with A. fumigatus biofilms. Cells, planktonic or biofilm culture filtrates of four P. aeruginosa mutants, pvdD-pchE-, pvdD-, lasR-rhlR-, and lasR-, inhibited A. fumigatus biofilm metabolism or planktonic A. fumigatus growth significantly less than P. aeruginosa wild type. The common defect of these four mutants was a lack in the production of the P. aeruginosa siderophore pyoverdine. Pure pyoverdine affected A. fumigatus biofilm metabolism, and restored inhibition by the above mutants. In lungs from cystic fibrosis patients, pyoverdine production and antifungal activity correlated. The key inhibitory mechanism for pyoverdine was iron-chelation and denial of iron to A. fumigatus. Further experiments revealed a counteracting, self-protective mechanism by A. fumigatus, based on A. fumigatus siderophore production.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/crescimento & desenvolvimento , Interações Microbianas , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Infecções Respiratórias/microbiologia , Aspergilose/patologia , Humanos , Mutação , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Infecções Respiratórias/patologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
PLoS One ; 13(11): e0207366, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30462698

RESUMO

The Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a polycationic, amphiphilic and helical neuropeptide, is well known for its neuroprotective actions and cell penetrating properties. In the present study, we evaluated the potent antibacterial property of PACAP38 and related analogs against various bacterial strains. Interestingly, PACAP38 and related analogs can inhibit the growth of various bacteria including Escherichia coli (JM109), Bacillus subtilis (PY79), and the pathogenic Burkholderia cenocepacia (J2315). Investigation of the mechanism of action suggested that a PACAP metabolite, identified as PACAP(9-38), might indeed be responsible for the observed PACAP38 antibacterial action. Surprisingly, PACAP(9-38), which does not induce haemolysis, exhibits an increased specificity toward Burkholderia cenocepacia J2315 compared to other tested bacteria. Finally, the predisposition of PACAP(9-38) to adopt a π-helix conformation rather than an α-helical conformation like PACAP38 could explain this gain in specificity. Overall, this study has revealed a new function for PACAP38 and related derivatives that can be added to its pleiotropic biological activities. This innovative study could therefore pave the way toward the development of new therapeutic agents against multiresistant bacteria, and more specifically the Burkholderia cenocepacia complex.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Complexo Burkholderia cepacia/crescimento & desenvolvimento , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Células CHO , Cricetulus , Humanos , Estrutura Secundária de Proteína
11.
J Bacteriol ; 200(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038255

RESUMO

Pseudomonas aeruginosa and Aspergillus fumigatus are common opportunistic bacterial and fungal pathogens, respectively. They often coexist in airways of immunocompromised patients and individuals with cystic fibrosis, where they form biofilms and cause acute and chronic illnesses. Hence, the interactions between them have long been of interest and it is known that P. aeruginosa can inhibit A. fumigatusin vitro We have approached the definition of the inhibitory P. aeruginosa molecules by studying 24 P. aeruginosa mutants with various virulence genes deleted for the ability to inhibit A. fumigatus biofilms. The ability of P. aeruginosa cells or their extracellular products produced during planktonic or biofilm growth to affect A. fumigatus biofilm metabolism or planktonic A. fumigatus growth was studied in agar and liquid assays using conidia or hyphae. Four mutants, the pvdD pchE, pvdD, lasR rhlR, and lasR mutants, were shown to be defective in various assays. This suggested the P. aeruginosa siderophore pyoverdine as the key inhibitory molecule, although additional quorum sensing-regulated factors likely contribute to the deficiency of the latter two mutants. Studies of pure pyoverdine substantiated these conclusions and included the restoration of inhibition by the pyoverdine deletion mutants. A correlation between the concentration of pyoverdine produced and antifungal activity was also observed in clinical P. aeruginosa isolates derived from lungs of cystic fibrosis patients. The key inhibitory mechanism of pyoverdine was chelation of iron and denial of iron to A. fumigatusIMPORTANCE Interactions between human pathogens found in the same body locale are of vast interest. These interactions could result in exacerbation or amelioration of diseases. The bacterium Pseudomonas aeruginosa affects the growth of the fungus Aspergillus fumigatus Both pathogens form biofilms that are resistant to therapeutic drugs and host immunity. P. aeruginosa and A. fumigatus biofilms are found in vivo, e.g., in the lungs of cystic fibrosis patients. Studying 24 P. aeruginosa mutants, we identified pyoverdine as the major anti-A. fumigatus compound produced by P. aeruginosa Pyoverdine captures iron from the environment, thus depriving A. fumigatus of a nutrient essential for its growth and metabolism. We show how microbes of different kingdoms compete for essential resources. Iron deprivation could be a therapeutic approach to the control of pathogen growth.


Assuntos
Antibiose , Aspergillus fumigatus/fisiologia , Biofilmes/crescimento & desenvolvimento , Mutação , Oligopeptídeos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fibrose Cística/microbiologia , Humanos , Ferro/metabolismo , Oligopeptídeos/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Pseudomonas aeruginosa/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Virulência/genética
12.
mBio ; 7(5)2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27703072

RESUMO

Chronic Pseudomonas aeruginosa infections cause significant morbidity in patients with cystic fibrosis (CF). Over years to decades, P. aeruginosa adapts genetically as it establishes chronic lung infections. Nonsynonymous mutations in lasR, the quorum-sensing (QS) master regulator, are common in CF. In laboratory strains of P. aeruginosa, LasR activates transcription of dozens of genes, including that for another QS regulator, RhlR. Despite the frequency with which lasR coding variants have been reported to occur in P. aeruginosa CF isolates, little is known about their consequences for QS. We sequenced lasR from 2,583 P. aeruginosa CF isolates. The lasR sequences of 580 isolates (22%) coded for polypeptides that differed from the conserved LasR polypeptides of well-studied laboratory strains. This collection included 173 unique lasR coding variants, 116 of which were either missense or nonsense mutations. We studied 31 of these variants. About one-sixth of the variant LasR proteins were functional, including 3 with nonsense mutations, and in some LasR-null isolates, genes that are LasR dependent in laboratory strains were nonetheless expressed. Furthermore, about half of the LasR-null isolates retained RhlR activity. Therefore, in some CF isolates the QS hierarchy is altered such that RhlR quorum sensing is independent of LasR regulation. Our analysis challenges the view that QS-silent P. aeruginosa is selected during the course of a chronic CF lung infection. Rather, some lasR sequence variants retain functionality, and many employ an alternate QS strategy involving RhlR. IMPORTANCE: Chronic Pseudomonas aeruginosa infections, such as those in patients with the genetic disease cystic fibrosis, are notable in that mutants with defects in the quorum-sensing transcription factor LasR frequently arise. In laboratory strains of P. aeruginosa, quorum sensing activates transcription of dozens of genes, many of which encode virulence factors, such as secreted proteases and hydrogen cyanide synthases. In well-studied laboratory strains, LasR-null mutants have a quorum-sensing-deficient phenotype. Therefore, the presence of LasR variants in chronic infections has been interpreted to indicate that quorum-sensing-regulated products are not important for those infections. We report that some P. aeruginosa LasR variant clinical isolates are not LasR-null mutants, and others have uncoupled a second quorum-sensing system, the RhlR system, from LasR regulation. In these uncoupled isolates, RhlR independently activates at least some quorum-sensing-dependent genes. Our findings suggest that quorum sensing plays a role in chronic P. aeruginosa infections, despite the emergence of LasR coding variants.


Assuntos
Proteínas de Bactérias/genética , Variação Genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Transativadores/genética , Proteínas de Bactérias/metabolismo , Códon sem Sentido , Fibrose Cística/complicações , Regulação Bacteriana da Expressão Gênica , Humanos , Mutação de Sentido Incorreto , Pseudomonas aeruginosa/isolamento & purificação , Análise de Sequência de DNA , Transativadores/metabolismo
13.
Environ Microbiol ; 13(1): 1-12, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20880095

RESUMO

The Burkholderia cepacia complex (Bcc) is composed of 17 closely related species. These bacteria are widely but heterogeneously distributed in the natural environment, such as soil, water and rhizosphere. Bcc strains are able to colonize various ecological niches by adopting versatile lifestyles, including saprophytism and (positive or deleterious) association with eukaryotic cells. Bcc strains have proven to be very efficient in biocontrol, plant growth promotion and bioremediation. However, they also are important opportunistic pathogens that can cause severe respiratory infections among individuals suffering from cystic fibrosis or chronic granulomatous disease. Therefore, considering that the distinction between plant beneficial and clinical strains is not obvious, biotechnological applications of Bcc strains are currently not allowed. This minireview provides an overview of the wide range of lifestyles that Bcc bacteria can adopt, leading to glimpses into their tremendous adaptation potential and highlighting remaining questions concerning potential implicated mechanisms.


Assuntos
Adaptação Biológica , Complexo Burkholderia cepacia/crescimento & desenvolvimento , Infecções por Burkholderia/microbiologia , Complexo Burkholderia cepacia/patogenicidade , Fibrose Cística/microbiologia , Doença Granulomatosa Crônica/microbiologia , Humanos , Plantas/microbiologia , Rizosfera , Microbiologia do Solo
14.
ISME J ; 4(1): 49-60, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19710710

RESUMO

Members of the Burkholderia cepacia complex (Bcc), such as B. ambifaria, are effective biocontrol strains, for instance, as plant growth-promoting bacteria; however, Bcc isolates can also cause severe respiratory infections in people suffering from cystic fibrosis (CF). No distinction is known between isolates from environmental and human origins, suggesting that the natural environment is a potential source of infectious Bcc species. While investigating the presence and role of phase variation in B. ambifaria HSJ1, an isolate recovered from a CF patient, we identified stable variants that arose spontaneously irrespective of the culture conditions. Phenotypic and proteomic approaches revealed that the transition from wild-type to variant types affects the expression of several putative virulence factors. By using four different infection models (Drosophila melanogaster, Galleria mellonella, macrophages and Dictyostelium discoideum), we showed that the wild-type was more virulent than the variant. It may be noted that the variant showed reduced replication in a human monocyte cell line when compared with the wild-type. On the other hand, the variant of isolate HSJ1 was more competitive in colonizing plant roots than the wild-type. Furthermore, we observed that only clinical B. ambifaria isolates generated phase variants, and that these variants showed the same phenotypes as observed with the HSJ1 variant. Finally, we determined that environmental B. ambifaria isolates showed traits that were characteristic of variants derived from clinical isolates. Our study therefore suggest that B. ambifaria uses phase variation to adapt to drastically different environments: the lung of patients with CF or the rhizosphere.


Assuntos
Adaptação Fisiológica , Complexo Burkholderia cepacia/fisiologia , Regulação Bacteriana da Expressão Gênica , Variação Genética , Fatores de Virulência/biossíntese , Animais , Complexo Burkholderia cepacia/crescimento & desenvolvimento , Complexo Burkholderia cepacia/patogenicidade , Células Cultivadas , Dictyostelium/microbiologia , Drosophila melanogaster/microbiologia , Humanos , Lepidópteros/microbiologia , Macrófagos/microbiologia , Monócitos/microbiologia , Raízes de Plantas/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA