Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Nucl Med ; 65(5): 775-780, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548349

RESUMO

Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Aterosclerose , Macrófagos , Tomografia por Emissão de Pósitrons , Receptores de Superfície Celular , Animais , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Radioisótopos de Cobre , Distribuição Tecidual , Compostos Radiofarmacêuticos/farmacocinética
2.
Circ Cardiovasc Imaging ; 16(11): e000081, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37916407

RESUMO

Infiltrative cardiomyopathies comprise a broad spectrum of inherited or acquired conditions caused by deposition of abnormal substances within the myocardium. Increased wall thickness, inflammation, microvascular dysfunction, and fibrosis are the common pathological processes that lead to abnormal myocardial filling, chamber dilation, and disruption of conduction system. Advanced disease presents as heart failure and cardiac arrhythmias conferring poor prognosis. Infiltrative cardiomyopathies are often diagnosed late or misclassified as other more common conditions, such as hypertrophic cardiomyopathy, hypertensive heart disease, ischemic or other forms of nonischemic cardiomyopathies. Accurate diagnosis is also critical because clinical features, testing methodologies, and approach to treatment vary significantly even within the different types of infiltrative cardiomyopathies on the basis of the type of substance deposited. Substantial advances in noninvasive cardiac imaging have enabled accurate and early diagnosis. thereby eliminating the need for endomyocardial biopsy in most cases. This scientific statement discusses the role of contemporary multimodality imaging of infiltrative cardiomyopathies, including echocardiography, nuclear and cardiac magnetic resonance imaging in the diagnosis, prognostication, and assessment of response to treatment.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Humanos , American Heart Association , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/patologia , Coração , Miocárdio/patologia , Imageamento por Ressonância Magnética
3.
JACC Basic Transl Sci ; 8(7): 801-816, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37547068

RESUMO

In the past 2 decades, research on atherosclerotic cardiovascular disease has uncovered inflammation to be a key driver of the pathophysiological process. A pressing need therefore exists to quantitatively and longitudinally probe inflammation, in preclinical models and in cardiovascular disease patients, ideally using non-invasive methods and at multiple levels. Here, we developed and employed in vivo multiparametric imaging approaches to investigate the immune response following myocardial infarction. The myocardial infarction models encompassed either transient or permanent left anterior descending coronary artery occlusion in C57BL/6 and Apoe-/-mice. We performed nanotracer-based fluorine magnetic resonance imaging and positron emission tomography (PET) imaging using a CD11b-specific nanobody and a C-C motif chemokine receptor 2-binding probe. We found that immune cell influx in the infarct was more pronounced in the permanent occlusion model. Further, using 18F-fluorothymidine and 18F-fluorodeoxyglucose PET, we detected increased hematopoietic activity after myocardial infarction, with no difference between the models. Finally, we observed persistent systemic inflammation and exacerbated atherosclerosis in Apoe-/- mice, regardless of which infarction model was used. Taken together, we showed the strengths and capabilities of multiparametric imaging in detecting inflammatory activity in cardiovascular disease, which augments the development of clinical readouts.

4.
Eur J Clin Invest ; 52(6): e13755, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35103996

RESUMO

AIMS: The aim of this investigation was to explore and characterize alterations in coronary circulatory function in function of increasing body weight with medically controlled cardiovascular risk factors and, thus, "metabolically" unhealthy obesity. MATERIALS AND METHODS: We prospectively enrolled 106 patients with suspected CAD but with normal stress-rest myocardial perfusion on 13 N-ammonia PET/CT and with medically controlled or no cardiovascular risk factors. 13 N-ammonia PET/CT concurrently determined myocardial blood flow (MBF) during pharmacologically induced hyperaemia and at rest. Based on body mass index (BMI), patients were grouped into normal weight (BMI: 20.0-24.9 kg/m2 , n = 22), overweight (BMI: 25.0-29.9 kg/m2 , n = 27), obese (BMI: 30.0-39.9 kg/m2 , n = 31), and morbidly obese (BMI ≥ 40kg/m2 , n = 26). RESULTS: Resting MBF was comparable among groups (1.09 ± 0.18 vs. 1.00 ± 0.15 vs. 0.96 ± 0.18 vs.. 1.06 ± 0.31 ml/g/min; p = .279 by ANOVA). Compared to normal weight individuals, the hyperaemic MBF progressively decreased in in overweight and obese groups, respectively (2.54 ± 0.48 vs. 2.02 ± 0.27 and 1.75 ± 0.39 ml/g/min; p < .0001), while it increased again in the group of morbidly obese individuals comparable to normal weight (2.44 ± 0.41 vs. 2.54 ± 0.48 ml/g/min, p = .192). The BMI of the study population correlated with the hyperaemic MBF in a quadratic or U-turn fashion (r = .34, SEE = 0.46; p ≤ .002). CONCLUSIONS: The U-turn of hyperaemic MBF from obesity to morbid obesity is likely to reflect contrasting effects of abdominal versus subcutaneous adipose tissue on coronary circulatory function indicative of two different disease entities, but needing further investigations.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Obesidade Mórbida , Amônia , Circulação Coronária/fisiologia , Humanos , Obesidade Mórbida/complicações , Sobrepeso/complicações , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons
5.
Diabetes ; 70(10): 2225-2236, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34266892

RESUMO

We used stable isotope-labeled glucose and palmitate tracer infusions, a hyperinsulinemic-euglycemic clamp, positron emission tomography of muscles and adipose tissue after [18F]fluorodeoxyglucose and [15O]water injections, and subcutaneous adipose tissue (SAT) biopsy to test the hypotheses that 1) increased glucose uptake in SAT is responsible for high insulin-stimulated whole-body glucose uptake in people with obesity who are insulin sensitive and 2) putative SAT factors thought to cause insulin resistance are present in people with obesity who are insulin resistant but not in those who are insulin sensitive. We found that high insulin-stimulated whole-body glucose uptake in insulin-sensitive participants with obesity was not due to channeling of glucose into SAT but, rather, was due to high insulin-stimulated muscle glucose uptake. Furthermore, insulin-stimulated muscle glucose uptake was not different between insulin-sensitive obese and lean participants even though adipocytes were larger, SAT perfusion and oxygenation were lower, and markers of SAT inflammation, fatty acid appearance in plasma in relation to fat-free mass, and plasma fatty acid concentration were higher in the insulin-sensitive obese than in lean participants. In addition, we observed only marginal or no differences in adipocyte size, SAT perfusion and oxygenation, and markers of SAT inflammation between insulin-resistant and insulin-sensitive obese participants. Plasma fatty acid concentration was also not different between insulin-sensitive and insulin-resistant obese participants, even though SAT was resistant to the inhibitory effect of insulin on lipolysis in the insulin-resistant obese group. These data suggest that several putative SAT factors commonly implicated in causing insulin resistance are normal consequences of SAT expansion unrelated to insulin resistance.


Assuntos
Resistência à Insulina/fisiologia , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Adulto , Composição Corporal/fisiologia , Estudos de Casos e Controles , Feminino , Glucose/metabolismo , Técnica Clamp de Glucose , Humanos , Insulina/farmacologia , Lipólise/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Obesidade/patologia , Gordura Subcutânea/efeitos dos fármacos , Gordura Subcutânea/patologia
6.
Mol Pharm ; 18(3): 1386-1396, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33591187

RESUMO

Chemokines and chemokine receptors play an important role in the initiation and progression of atherosclerosis by mediating the trafficking of inflammatory cells. Chemokine receptor 5 (CCR5) has major implications in promoting the development of plaques to advanced stage and related vulnerability. CCR5 antagonist has demonstrated the effective inhibition of atherosclerotic progression in mice, making it a potential biomarker for atherosclerosis management. To accurately determine CCR5 in vivo, we synthesized CCR5 targeted Comb nanoparticles through a modular design and construction strategy with control over the physiochemical properties and functionalization of CCR5 targeting peptide d-Ala-peptide T-amide (DAPTA-Comb). In vivo pharmacokinetic evaluation through 64Cu radiolabeling showed extended blood circulation of 64Cu-DAPTA-Combs conjugated with 10%, 25%, and 40% DAPTA. The different organ distribution profiles of the three nanoparticles demonstrated the effect of DAPTA on not only physicochemical properties but also targeting efficiency. In vivo positron emission tomography/computed tomography (PET/CT) imaging in an apolipoprotein E knockout mouse atherosclerosis model (ApoE-/-) showed that the three 64Cu-DAPTA-Combs could sensitively and specifically detect CCR5 along the progression of atherosclerotic lesions. In an ApoE-encoding adenoviral vector (AAV) induced plaque regression ApoE-/- mouse model, decreased monocyte recruitment, CD68+ macrophages, CCR5 expression, and plaque size were all associated with reduced PET signals, which not only further confirmed the targeting efficiency of 64Cu-DAPTA-Combs but also highlighted the potential of these targeted nanoparticles for atherosclerosis imaging. Moreover, the up-regulation of CCR5 and colocalization with CD68+ macrophages in the necrotic core of ex vivo human plaque specimens warrant further investigation for atherosclerosis prognosis.


Assuntos
Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Nanopartículas/administração & dosagem , Receptores CCR5/metabolismo , Alanina/metabolismo , Animais , Apolipoproteínas E/metabolismo , Quimiocinas/metabolismo , Radioisótopos de Cobre/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/metabolismo
7.
Diabetologia ; 64(5): 1158-1168, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33511440

RESUMO

AIMS/HYPOTHESIS: It has been proposed that muscle fibre type composition and perfusion are key determinants of insulin-stimulated muscle glucose uptake, and alterations in muscle fibre type composition and perfusion contribute to muscle, and consequently whole-body, insulin resistance in people with obesity. The goal of the study was to evaluate the relationships among muscle fibre type composition, perfusion and insulin-stimulated glucose uptake rates in healthy, lean people and people with obesity. METHODS: We measured insulin-stimulated whole-body glucose disposal and glucose uptake and perfusion rates in five major muscle groups (erector spinae, obliques, rectus abdominis, hamstrings, quadriceps) in 15 healthy lean people and 37 people with obesity by using the hyperinsulinaemic-euglycaemic clamp procedure in conjunction with [2H]glucose tracer infusion (to assess whole-body glucose disposal) and positron emission tomography after injections of [15O]H2O (to assess muscle perfusion) and [18F]fluorodeoxyglucose (to assess muscle glucose uptake). A biopsy from the vastus lateralis was obtained to assess fibre type composition. RESULTS: We found: (1) a twofold difference in glucose uptake rates among muscles in both the lean and obese groups (rectus abdominis: 67 [51, 78] and 32 [21, 55] µmol kg-1 min-1 in the lean and obese groups, respectively; erector spinae: 134 [103, 160] and 66 [24, 129] µmol kg-1 min-1, respectively; median [IQR]) that was unrelated to perfusion or fibre type composition (assessed in the vastus only); (2) the impairment in insulin action in the obese compared with the lean group was not different among muscle groups; and (3) insulin-stimulated whole-body glucose disposal expressed per kg fat-free mass was linearly related with muscle glucose uptake rate (r2 = 0.65, p < 0.05). CONCLUSIONS/INTERPRETATION: Obesity-associated insulin resistance is generalised across all major muscles, and is not caused by alterations in muscle fibre type composition or perfusion. In addition, insulin-stimulated whole-body glucose disposal relative to fat-free mass provides a reliable index of muscle glucose uptake rate.


Assuntos
Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Obesidade/metabolismo , Magreza/metabolismo , Adulto , Transporte Biológico/efeitos dos fármacos , Biópsia , Feminino , Fluordesoxiglucose F18 , Glucose/farmacocinética , Técnica Clamp de Glucose , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/diagnóstico por imagem , Obesidade/patologia , Tomografia por Emissão de Pósitrons , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/efeitos dos fármacos , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Magreza/diagnóstico por imagem , Magreza/patologia
8.
J Nucl Cardiol ; 28(4): 1649-1659, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705425

RESUMO

BACKGROUND: Barth syndrome (BTHS) is a rare X-linked condition resulting in cardiomyopathy, however; the effects of BTHS on myocardial substrate metabolism and its relationships with cardiac high-energy phosphate metabolism and left ventricular (LV) function are unknown. We sought to characterize myocardial glucose, fatty acid (FA), and leucine metabolism in BTHS and unaffected controls and examine their relationships with cardiac high-energy phosphate metabolism and LV function. METHODS/RESULTS: Young adults with BTHS (n = 14) and unaffected controls (n = 11, Control, total n = 25) underwent bolus injections of 15O-water and 1-11C-glucose, palmitate, and leucine and concurrent positron emission tomography imaging. LV function and cardiac high-energy phosphate metabolism were examined via echocardiography and 31P magnetic resonance spectroscopy, respectively. Myocardial glucose extraction fraction (21 ± 14% vs 10 ± 8%, P = .03) and glucose utilization (828.0 ± 470.0 vs 393.2 ± 361.0 µmol·g-1·min-1, P = .02) were significantly higher in BTHS vs Control. Myocardial FA extraction fraction (31 ± 7% vs 41 ± 6%, P < .002) and uptake (0.25 ± 0.04 vs 0.29 ± 0.03 mL·g-1·min-1, P < .002) were significantly lower in BTHS vs Control. Altered myocardial metabolism was associated with lower cardiac function in BTHS. CONCLUSIONS: Myocardial substrate metabolism is altered and may contribute to LV dysfunction in BTHS. Clinical Trials #: NCT01625663.


Assuntos
Síndrome de Barth/diagnóstico por imagem , Síndrome de Barth/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda/fisiologia , Adulto , Síndrome de Barth/fisiopatologia , Estudos de Casos e Controles , Ecocardiografia , Humanos , Leucina/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Adulto Jovem
9.
Am J Respir Crit Care Med ; 203(1): 78-89, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673071

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive inflammatory lung disease without effective molecular markers of disease activity or treatment responses. Monocyte and interstitial macrophages that express the C-C motif CCR2 (chemokine receptor 2) are active in IPF and central to fibrosis.Objectives: To phenotype patients with IPF for potential targeted therapy, we developed 64Cu-DOTA-ECL1i, a radiotracer to noninvasively track CCR2+ monocytes and macrophages using positron emission tomography (PET).Methods: CCR2+ cells were investigated in mice with bleomycin- or radiation-induced fibrosis and in human subjects with IPF. The CCR2+ cell populations were localized relative to fibrotic regions in lung tissue and characterized using immunolocalization, single-cell mass cytometry, and Ccr2 RNA in situ hybridization and then correlated with parallel quantitation of lung uptake by 64Cu-DOTA-ECL1i PET.Measurements and Main Results: Mouse models established that increased 64Cu-DOTA-ECL1i PET uptake in the lung correlates with CCR2+ cell infiltration associated with fibrosis (n = 72). As therapeutic models, the inhibition of fibrosis by IL-1ß blockade (n = 19) or antifibrotic pirfenidone (n = 18) reduced CCR2+ macrophage accumulation and uptake of the radiotracer in mouse lungs. In lung tissues from patients with IPF, CCR2+ cells concentrated in perifibrotic regions and correlated with radiotracer localization (n = 21). Human imaging revealed little lung uptake in healthy volunteers (n = 7), whereas subjects with IPF (n = 4) exhibited intensive signals in fibrotic zones.Conclusions: These findings support a role for imaging CCR2+ cells within the fibrogenic niche in IPF to provide a molecular target for personalized therapy and monitoring.Clinical trial registered with www.clinicaltrials.gov (NCT03492762).


Assuntos
Biomarcadores/química , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Macrófagos/fisiologia , Monócitos/fisiologia , Receptores CCR2/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Imagem Molecular , Tomografia por Emissão de Pósitrons
11.
Eur J Med Chem ; 206: 112713, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919113

RESUMO

Sphingosine kinase (SphK) is primarily responsible for the production of Sphingosine-1-phosphate (S1P) that plays an important role in many biological and pathobiological processes including cancer, inflammation, neurological and cardiovascular disorders. Most research has focused on developing inhibitors of SphK1 rather than inhibitors of the other isoform SphK2 which has great importance in several pathophysiologic pathways. Exploration of new analogues for improving the potency and selectivity of SphK2 inhibitors is critical. We now have designed, synthesized, and evaluated eighteen new 1,2,3-triazole analogues for their SphK2 inhibitory activity using a ADP-Glo kinase assay, and explored their in vivo anti-tumor bioactivity. Several compounds including 21c, 21e, 21g, 25e-h, 29a-c have high selectivity for SphK2 over SphK1; compound 21g displayed the highest potency with an IC50 value of 0.23 µM. In addition, three compounds 21a, 21b, and 25b have high anti-tumor activity against U-251 MG human glioblastoma cells. Molecular modeling study was performed to elucidate the polar head group and 1,2,3-triazole pharmacophore impact on the SphK2 selectivity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Triazóis/química , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/metabolismo
12.
Circ Cardiovasc Imaging ; 13(3): e009889, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32164451

RESUMO

BACKGROUND: The monocyte chemoattractant protein-1/CCR2 (chemokine receptor 2) axis plays an important role in abdominal aortic aneurysm (AAA) pathogenesis, with effects on disease progression and anatomic stability. We assessed the expression of CCR2 in a rodent model and human tissues, using a targeted positron emission tomography radiotracer (64Cu-DOTA-ECL1i). METHODS: AAAs were generated in Sprague-Dawley rats by exposing the infrarenal, intraluminal aorta to PPE (porcine pancreatic elastase) under pressure to induce aneurysmal degeneration. Heat-inactivated PPE was used to generate a sham operative control. Rat AAA rupture was stimulated by the administration of ß-aminopropionitrile, a lysyl oxidase inhibitor. Biodistribution was performed in wild-type rats at 1 hour post tail vein injection of 64Cu-DOTA-ECL1i. Dynamic positron emission tomography/computed tomography imaging was performed in rats to determine the in vivo distribution of radiotracer. RESULTS: Biodistribution showed fast renal clearance. The localization of radiotracer uptake in AAA was verified with high-resolution computed tomography. At day 7 post-AAA induction, the radiotracer uptake (standardized uptake value [SUV]=0.91±0.25) was approximately twice that of sham-controls (SUV=0.47±0.10; P<0.01). At 14 days post-AAA induction, radiotracer uptake by either group did not significantly change (AAA SUV=0.86±0.17 and sham-control SUV=0.46±0.10), independent of variations in aortic diameter. Competitive CCR2 receptor blocking significantly decreased AAA uptake (SUV=0.42±0.09). Tracer uptake in AAAs that subsequently ruptured (SUV=1.31±0.14; P<0.005) demonstrated uptake nearly twice that of nonruptured AAAs (SUV=0.73±0.11). Histopathologic characterization of rat and human AAA tissues obtained from surgery revealed increased expression of CCR2 that was co-localized with CD68+ macrophages. Ex vivo autoradiography demonstrated specific binding of 64Cu-DOTA-ECL1i to CCR2 in both rat and human aortic tissues. CONCLUSIONS: CCR2 positron emission tomography is a promising new biomarker for the noninvasive assessment of AAA inflammation that may aid in associated rupture prediction.


Assuntos
Aneurisma Roto/diagnóstico , Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/diagnóstico , Regulação da Expressão Gênica , Tomografia por Emissão de Pósitrons/métodos , Receptores CCR2/genética , Aneurisma Roto/genética , Aneurisma Roto/metabolismo , Animais , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Biomarcadores/metabolismo , Fluordesoxiglucose F18/farmacologia , Masculino , Prognóstico , RNA/genética , Compostos Radiofarmacêuticos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores CCR2/biossíntese
14.
Mol Imaging Biol ; 22(2): 285-292, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31165387

RESUMO

PURPOSE: In preclinical studies with rodent models of inflammatory diseases, [11C]CS1P1 has been identified as a promising imaging agent targeting sphingosine-1-phosphate receptor 1 (S1P1) in the central nervous system and other tissues. In preparation for USA Food and Drug Administration (FDA) approval of [11C]CS1P1 for human use, an acute biodistribution study in mice and an acute tolerability and toxicity evaluation in rats were conducted. PROCEDURES: Acute organ biodistribution and excretion data was obtained using male and female Swiss Webster mice intravenously (IV) injected with 4.8-10 MBq of [11C]CS1P1. The organ residence times for each harvested organ were calculated using the animal biodistribution data, and were entered in the program OLINDA/EXM for C-11 to obtain human radiation dosimetry estimates. Acute tolerability and toxicity studies were conducted in male and female Sprague Dawley rats. Rats were administered an IV bolus of either the vehicle control or 0.3 mg/kg CS1P1. Blood samples were collected and a gross post-mortem examination was conducted at day 2 or day 15 post-injection. RESULTS: The extrapolated human radiation dose estimates revealed that the highest organ dose was received by the liver with 24.05 µGy/MBq in males and 32.70 µGy/MBq in females. The effective dose (ED) estimates of [11C]CS1P1 were calculated at 3.5 µSv/MBq in males and 5.9 µSv/MBq in females. The acute tolerability and toxicity study identified 0.3 mg/kg as a no observable adverse effect level (NOAEL) dose, which is a ~ 300-fold dose multiple of the human equivalent dose of the mass to be injected for positron emission tomography (PET) imaging studies in humans as a no-observable-effect limit. CONCLUSIONS: The toxicity study in rats suggested that injection dose of radiotracer [11C]CS1P1 with mass amount < 10 µg is safe for performing a human PET study. The dosimetry data supported an injection of 0.74 GBq (20 mCi) dose for human studies would be acceptable.


Assuntos
Radioisótopos de Carbono , Radiometria , Receptores de Esfingosina-1-Fosfato/química , Animais , Sistema Nervoso Central/diagnóstico por imagem , Aprovação de Drogas , Feminino , Masculino , Camundongos , Tomografia por Emissão de Pósitrons , Doses de Radiação , Compostos Radiofarmacêuticos , Ratos Sprague-Dawley , Distribuição Tecidual , Estados Unidos , United States Food and Drug Administration , Imagem Corporal Total/métodos
15.
Circ Res ; 124(6): 881-890, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30661445

RESUMO

RATIONALE: Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. OBJECTIVE: To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. METHODS AND RESULTS: We synthesized and tested the performance of a positron emission tomography radiotracer (68Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2-/- mice, demonstrating target specificity. Autoradiography demonstrated that 68Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. CONCLUSIONS: These findings demonstrate the sensitivity and specificity of 68Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.


Assuntos
Coração/diagnóstico por imagem , Macrófagos/fisiologia , Monócitos/fisiologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Animais , Movimento Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular , Tomografia por Emissão de Pósitrons , Receptores CCR2/análise
16.
Circulation ; 139(3): 313-321, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30586734

RESUMO

BACKGROUND: Case studies have suggested the efficacy of catheter-free, electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy, although prospective data are lacking. METHODS: We conducted a prospective phase I/II trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electric cardiac imaging with a standard stereotactic body radiation therapy workflow followed by delivery of a single fraction of 25 Gy to the target. The primary safety end point was treatment-related serious adverse events in the first 90 days. The primary efficacy end point was any reduction in VT episodes (tracked by indwelling implantable cardioverter defibrillators) or any reduction in PVC burden (as measured by a 24-hour Holter monitor) comparing the 6 months before and after treatment (with a 6-week blanking window after treatment). Health-related quality of life was assessed using the Short Form-36 questionnaire. RESULTS: Nineteen patients were enrolled (17 for VT, 2 for PVC cardiomyopathy). Median noninvasive ablation time was 15.3 minutes (range, 5.4-32.3). In the first 90 days, 2/19 patients (10.5%) developed a treatment-related serious adverse event. The median number of VT episodes was reduced from 119 (range, 4-292) to 3 (range, 0-31; P<0.001). Reduction was observed for both implantable cardioverter defibrillator shocks and antitachycardia pacing. VT episodes or PVC burden were reduced in 17/18 evaluable patients (94%). The frequency of VT episodes or PVC burden was reduced by 75% in 89% of patients. Overall survival was 89% at 6 months and 72% at 12 months. Use of dual antiarrhythmic medications decreased from 59% to 12% ( P=0.008). Quality of life improved in 5 of 9 Short Form-36 domains at 6 months. CONCLUSIONS: Noninvasive electrophysiology-guided cardiac radioablation is associated with markedly reduced ventricular arrhythmia burden with modest short-term risks, reduction in antiarrhythmic drug use, and improvement in quality of life. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov/ . Unique identifier: NCT02919618.


Assuntos
Potenciais de Ação , Técnicas Eletrofisiológicas Cardíacas , Ventrículos do Coração/efeitos da radiação , Ablação por Radiofrequência/métodos , Radiocirurgia/métodos , Taquicardia Ventricular/radioterapia , Complexos Ventriculares Prematuros/radioterapia , Idoso , Idoso de 80 Anos ou mais , Antiarrítmicos/uso terapêutico , Feminino , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Missouri , Valor Preditivo dos Testes , Estudos Prospectivos , Qualidade de Vida , Ablação por Radiofrequência/efeitos adversos , Radiocirurgia/efeitos adversos , Recidiva , Fatores de Risco , Inquéritos e Questionários , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/fisiopatologia
17.
J Thorac Imaging ; 33(3): 139-146, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29489584

RESUMO

Simultaneous acquisition positron emission tomography-magnetic resonance imaging (PET-MRI) has the ability to combine anatomic information derived from cardiac MRI with quantitative capabilities of cardiac PET and MRI and the promise of molecular imaging by specific PET tracers. This combination of cardiac PET and MRI delivers a robust and comprehensive clinical examination. It has the potential to assess various cardiovascular conditions, including assessment of myocardial ischemia, infarction, and function, as well as specific characterization of inflammatory and infiltrative heart diseases such as cardiac sarcoid and amyloid. It also offers fascinating possibilities in imaging other cardiovascular-related disease states, such as tumor imaging and vascular imaging. In this review, we begin with a general overview of the potentials of PET-MRI in cardiovascular imaging, followed by a discussion of the technical challenges unique to cardiovascular PET-MRI. We then discuss PET-MRI in various cardiovascular disease imaging applications. Potential limitations of PET-MRI and future directions are also considered.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/tendências , Imagem Multimodal/tendências , Tomografia por Emissão de Pósitrons/tendências
18.
Arterioscler Thromb Vasc Biol ; 38(5): 1030-1036, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567678

RESUMO

OBJECTIVE: Aortic arch transplants have advanced our understanding of processes that contribute to progression and regression of atherosclerotic plaques. To characterize the dynamic behavior of monocytes and macrophages in atherosclerotic plaques over time, we developed a new model of cervical aortic arch transplantation in mice that is amenable to intravital imaging. APPROACH AND RESULTS: Vascularized aortic arch grafts were transplanted heterotropically to the right carotid arteries of recipient mice using microsurgical suture techniques. To image immune cells in atherosclerotic lesions during regression, plaque-bearing aortic arch grafts from B6 ApoE-deficient donors were transplanted into syngeneic CX3CR1 GFP reporter mice. Grafts were evaluated histologically, and monocytic cells in atherosclerotic plaques in ApoE-deficient grafts were imaged intravitally by 2-photon microscopy in serial fashion. In complementary experiments, CCR2+ cells in plaques were serially imaged by positron emission tomography using specific molecular probes. Plaques in ApoE-deficient grafts underwent regression after transplantation into normolipidemic hosts. Intravital imaging revealed clusters of largely immotile CX3CR1+ monocytes/macrophages in regressing plaques that had been recruited from the periphery. We observed a progressive decrease in CX3CR1+ monocytic cells in regressing plaques and a decrease in CCR2+ positron emission tomography signal during 4 months. CONCLUSIONS: Cervical transplantation of atherosclerotic mouse aortic arches represents a novel experimental tool to investigate cellular mechanisms that contribute to the remodeling of atherosclerotic plaques.


Assuntos
Aorta Torácica/diagnóstico por imagem , Aorta Torácica/patologia , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/patologia , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Microscopia Intravital/métodos , Microscopia de Fluorescência por Excitação Multifotônica , Monócitos/patologia , Placa Aterosclerótica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Aorta Torácica/metabolismo , Aorta Torácica/transplante , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout para ApoE , Monócitos/metabolismo , Receptores CCR2/metabolismo , Fatores de Tempo , Proteína Vermelha Fluorescente
19.
J Nucl Cardiol ; 25(1): 39-52, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29110288

RESUMO

As the second term of our commitment to Journal begins, we, the editors, would like to reflect on a few topics that have relevance today. These include prognostication and paradigm shifts; Serial testing: How to handle data? Is the change in perfusion predictive of outcome and which one? Ischemia-guided therapy: fractional flow reserve vs perfusion vs myocardial blood flow; positron emission tomography (PET) imaging using Rubidium-82 vs N-13 ammonia vs F-18 Flurpiridaz; How to differentiate microvascular disease from 3-vessel disease by PET? The imaging scene outside the United States, what are the differences and similarities? Radiation exposure; Special issues with the new cameras? Is attenuation correction needed? Are there normal databases and are these specific to each camera system? And finally, hybrid imaging with single-photon emission tomography or PET combined with computed tomography angiography or coronary calcium score. We hope these topics are of interest to our readers.


Assuntos
Imagem de Perfusão do Miocárdio , Tomografia por Emissão de Pósitrons , Amônia , Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária , Vasos Coronários/diagnóstico por imagem , Bases de Dados Factuais , Reserva Fracionada de Fluxo Miocárdico , Humanos , Microcirculação , Imagem Multimodal , Isquemia Miocárdica/diagnóstico por imagem , Radioisótopos de Nitrogênio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Valor Preditivo dos Testes , Prognóstico , Piridazinas , Radioisótopos de Rubídio , Tomografia Computadorizada de Emissão de Fóton Único , Estados Unidos
20.
Magn Reson Imaging Clin N Am ; 25(2): 325-333, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28390532

RESUMO

Simultaneous acquisition PET/MR imaging combines the anatomic capabilities of cardiac MR imaging with quantitative capabilities of both PET and MR imaging. Cardiac PET/MR imaging has the potential not only to assess cardiac tumors but also to provide thorough assessment of myocardial ischemia, infarction, and function and specific characterization of cardiomyopathies, such as cardiac sarcoid. In this article, the authors start with a discussion of the technical challenges specific to cardiovascular PET/MR imaging followed by a discussion of the use of PET/MR imaging in various cardiovascular conditions.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Coração/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA