Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464161

RESUMO

We previously reported that the DNA alkylator and transcriptional-blocking chemotherapeutic agent trabectedin enhances oncolytic herpes simplex viroimmunotherapy in human sarcoma xenograft models, though the mechanism remained to be elucidated. Here we report trabectedin disrupts the intrinsic cellular anti-viral response which increases viral transcript spread throughout the human tumor cells. We also extended our synergy findings to syngeneic murine sarcoma models, which are poorly susceptible to virus infection. In the absence of robust virus replication, we found trabectedin enhanced viroimmunotherapy efficacy by reducing immunosuppressive macrophages and stimulating granzyme expression in infiltrating T and NK cells to cause immune-mediated tumor regressions. Thus, trabectedin enhances both the direct virus-mediated killing of tumor cells and the viral-induced activation of cytotoxic effector lymphocytes to cause tumor regressions across models. Our data provide a strong rationale for clinical translation as both mechanisms should be simultaneously active in human patients.

2.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260361

RESUMO

Purpose: Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. This study delineates how osteosarcoma cells educate the lung microenvironment during metastatic progression. Experimental design: Using single-cell transcriptomics (scRNA-seq), we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multi-parameter immunofluorescence. We evaluated the ability of nintedanib to impair metastatic colonization and prevent osteosarcoma-induced education of the lung microenvironment in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Results: Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially-differentiated epithelial intermediates. Inhibition of fibrotic pathways with nintedanib prevented metastatic progression in multiple murine and human xenograft models. Conclusions: Our work demonstrates that osteosarcoma cells co-opt fibrosis to promote metastatic outgrowth. When harmonized with data from adult epithelial cancers, our results support a generalized model wherein aberrant mesenchymal-epithelial interactions are critical for promoting lung metastasis. Adult epithelial carcinomas induce fibrotic pathways in normal lung fibroblasts, whereas osteosarcoma, a pediatric mesenchymal tumor, exhibits fibrotic reprogramming in response to the aberrant wound-healing behaviors of an otherwise normal lung epithelium, which are induced by tumor cell interactions. Statement of translational relevance: Therapies that block metastasis have the potential to save the majority of lives lost due to solid tumors. Disseminated tumor cells must educate the foreign, inhospitable microenvironments they encounter within secondary organs to facilitate metastatic colonization. Our study elucidated that disseminated osteosarcoma cells survive within the lung by co-opting and amplifying the lung's endogenous wound healing response program. More broadly, our results support a model wherein mesenchymal-epithelial cooperation is a key driver of lung metastasis. Osteosarcoma, a pediatric mesenchymal tumor, undergoes lung epithelial induced fibrotic activation while also transforming normal lung epithelial cells towards a fibrosis promoting phenotype. Conversely, adult epithelial carcinomas activate fibrotic signaling in normal lung mesenchymal fibroblasts. Our data implicates fibrosis and abnormal wound healing as key drivers of lung metastasis across multiple tumor types that can be targeted therapeutically to disrupt metastasis progression.

3.
Cell Oncol (Dordr) ; 47(1): 259-282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676378

RESUMO

PURPOSE: For patients with osteosarcoma, disease-related mortality most often results from lung metastasis-a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis. METHODS: We analyzed single cell RNA-sequencing (scRNAseq) data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma. RESULTS: Expression patterns suggest that the MAPK pathway is significantly elevated in early and established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma. CONCLUSION: Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Osteossarcoma , Animais , Cães , Humanos , Camundongos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Pulmão/metabolismo , Neoplasias Pulmonares/secundário , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Osteossarcoma/patologia , Fosforilação
4.
Artigo em Inglês | MEDLINE | ID: mdl-37754576

RESUMO

Cigar smoking remains a public health issue in the United States (U.S.), with a heterogeneous prevalence based on sociodemographic characteristics. Nationally representative data suggest changes in cigar smoking over time, with some evidence for sociodemographic differences. Using data from the 2002-2019 National Survey on Drug Use and Health (NSDUH), the prevalence of past-30-day cigar smoking was examined overall and stratified by sociodemographic characteristics; joinpoint regression examined the trends. Logistic regression analyses identified the correlates of cigar smoking using 2020 NSDUH data. From 2002 to 2004, the prevalence of cigar smoking remained stable (5.33-5.73%), but declined from 2004 to 2019 (5.73-4.29%). Cigar smoking declined in some periods between 2002-2019 among the non-Hispanic White, Hispanic, ages 12-17, ages 18-20, ages 21-25, age ≥ 35, and male subgroups, but remained unchanged among the non-Hispanic Other, ages 26-34, and female subgroups. Cigar smoking increased among non-Hispanic Black persons overall from 2002 to 2019 (6.67-8.02%). Past-30-day cigarette smoking and drug or alcohol use disorder was associated with an increased likelihood of cigar use, while female sex was associated with a decreased likelihood of cigar use, across all age groups. Though a decline in the prevalence of past-30-day cigar smoking is seen in the general population, the same is not evident among all sociodemographic subgroups. Our findings have the potential to inform tobacco cessation efforts within clinical practice, as well as regulatory efforts to reduce cigar use.


Assuntos
Alcoolismo , Fumar Charutos , Fumar Cigarros , Transtornos Relacionados ao Uso de Substâncias , Feminino , Humanos , Masculino , Fumar Cigarros/epidemiologia , Etnicidade , Estados Unidos/epidemiologia , Grupos Raciais , Criança , Adolescente , Adulto Jovem , Adulto
5.
Mol Ther Oncolytics ; 30: 39-55, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37583388

RESUMO

Oncolytic viruses, modified for tumor-restricted infection, are a promising cancer immunotherapeutic, yet much remains to be understood about factors driving their activity and outcome in the tumor microenvironment. Here, we report that oncolytic herpes simplex virus C134, previously found to exert T cell-dependent efficacy in mouse models of glioblastoma, exerts T cell-independent efficacy in mouse models of medulloblastoma, indicating this oncolytic virus uses different mechanisms in different tumors. We investigated C134's behavior in mouse medulloblastomas, using single cell RNA sequencing to map C134-induced gene expression changes across cell types, timepoints, and medulloblastoma subgroup models at whole-transcriptome resolution. Our work details substantial oncolytic virus-induced transcriptional remodeling of medulloblastoma-infiltrating immune cells, 10 subpopulations of monocytes and macrophages collectively demonstrating M1-like responses to C134, and suggests C134 be investigated as a potential new therapy for medulloblastoma.

6.
Cancer Res Commun ; 3(4): 564-575, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066022

RESUMO

Osteosarcoma is an aggressive malignancy characterized by high genomic complexity. Identification of few recurrent mutations in protein coding genes suggests that somatic copy-number aberrations (SCNA) are the genetic drivers of disease. Models around genomic instability conflict-it is unclear whether osteosarcomas result from pervasive ongoing clonal evolution with continuous optimization of the fitness landscape or an early catastrophic event followed by stable maintenance of an abnormal genome. We address this question by investigating SCNAs in >12,000 tumor cells obtained from human osteosarcomas using single-cell DNA sequencing, with a degree of precision and accuracy not possible when inferring single-cell states using bulk sequencing. Using the CHISEL algorithm, we inferred allele- and haplotype-specific SCNAs from this whole-genome single-cell DNA sequencing data. Surprisingly, despite extensive structural complexity, these tumors exhibit a high degree of cell-cell homogeneity with little subclonal diversification. Longitudinal analysis of patient samples obtained at distant therapeutic timepoints (diagnosis, relapse) demonstrated remarkable conservation of SCNA profiles over tumor evolution. Phylogenetic analysis suggests that the majority of SCNAs were acquired early in the oncogenic process, with relatively few structure-altering events arising in response to therapy or during adaptation to growth in metastatic tissues. These data further support the emerging hypothesis that early catastrophic events, rather than sustained genomic instability, give rise to structural complexity, which is then preserved over long periods of tumor developmental time. Significance: Chromosomally complex tumors are often described as genomically unstable. However, determining whether complexity arises from remote time-limited events that give rise to structural alterations or a progressive accumulation of structural events in persistently unstable tumors has implications for diagnosis, biomarker assessment, mechanisms of treatment resistance, and represents a conceptual advance in our understanding of intratumoral heterogeneity and tumor evolution.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Filogenia , Variações do Número de Cópias de DNA/genética , Recidiva Local de Neoplasia , Osteossarcoma/genética , Instabilidade Genômica/genética , Neoplasias Ósseas/genética
7.
Tob Control ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045605

RESUMO

OBJECTIVE: Determine longitudinal tobacco product discontinuation rates among youth (ages 12-17 years) in the USA between 2013 and 2019. METHODS: The Population Assessment of Tobacco and Health Study, a nationally representative, longitudinal cohort study, was used to determine annual/biennial rates of tobacco product discontinuation behaviours among youth across 2013-2019: (1) discontinuing product use (transition from past 30-day use to no past 30-day use), (2) attempting to quit product use and (3) discontinuing product use among those who attempted to quit. Discontinuing use was evaluated separately for cigarettes, electronic nicotine delivery systems (ENDS), cigars, hookah, smokeless tobacco and any tobacco. Attempting to quit and discontinuing use among those who attempted were each evaluated for cigarettes and ENDS. Generalised estimating equations were used to evaluate linear and non-linear trends in rates across the study period. RESULTS: Between 2013 and 2019, biennial rates of discontinuing tobacco product use among youth increased for cigarettes from 29% to 40%, increased for smokeless tobacco from 39% to 60%, and decreased for ENDS from 53% to 27%. By 2018/2019, rates of discontinuing use among attempters were 30% for those who used ENDS and 30% for those who smoked cigarettes. CONCLUSIONS: Findings show decreasing rates of discontinuing ENDS use among youth in the USA alongside the changing ENDS marketplace and increasing rates of discontinuing cigarette smoking and smokeless tobacco use. Findings will serve as benchmarks against which future tobacco product discontinuation rates can be compared with evaluating impacts of subsequent tobacco regulatory policies, ENDS product development and public education campaigns.

8.
BMC Biol ; 21(1): 98, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106386

RESUMO

BACKGROUND: Tumors are complex tissues containing collections of phenotypically diverse malignant and nonmalignant cells. We know little of the mechanisms that govern heterogeneity of tumor cells nor of the role heterogeneity plays in overcoming stresses, such as adaptation to different microenvironments. Osteosarcoma is an ideal model for studying these mechanisms-it exhibits widespread inter- and intra-tumoral heterogeneity, predictable patterns of metastasis, and a lack of clear targetable driver mutations. Understanding the processes that facilitate adaptation to primary and metastatic microenvironments could inform the development of therapeutic targeting strategies. RESULTS: We investigated single-cell RNA-sequencing profiles of 47,977 cells obtained from cell line and patient-derived xenograft models as cells adapted to growth within primary bone and metastatic lung environments. Tumor cells maintained phenotypic heterogeneity as they responded to the selective pressures imposed during bone and lung colonization. Heterogenous subsets of cells defined by distinct transcriptional profiles were maintained within bone- and lung-colonizing tumors, despite high-level selection. One prominent heterogenous feature involving glucose metabolism was clearly validated using immunofluorescence staining. Finally, using concurrent lineage tracing and single-cell transcriptomics, we found that lung colonization enriches for multiple clones with distinct transcriptional profiles that are preserved across cellular generations. CONCLUSIONS: Response to environmental stressors occurs through complex and dynamic phenotypic adaptations. Heterogeneity is maintained, even in conditions that enforce clonal selection. These findings likely reflect the influences of developmental processes promoting diversification of tumor cell subpopulations, which are retained, even in the face of selective pressures.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Perfilação da Expressão Gênica , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Microambiente Tumoral/genética
9.
Cell Rep ; 42(3): 112197, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36871221

RESUMO

Recent studies have shown the importance of the dynamic tumor microenvironment (TME) in high-grade gliomas (HGGs). In particular, myeloid cells are known to mediate immunosuppression in glioma; however, it is still unclear if myeloid cells play a role in low-grade glioma (LGG) malignant progression. Here, we investigate the cellular heterogeneity of the TME using single-cell RNA sequencing in a murine glioma model that recapitulates the malignant progression of LGG to HGG. LGGs show increased infiltrating CD4+ and CD8+ T cells and natural killer (NK) cells in the TME, whereas HGGs abrogate this infiltration. Our study identifies distinct macrophage clusters in the TME that show an immune-activated phenotype in LGG but then evolve to an immunosuppressive state in HGG. We identify CD74 and macrophage migration inhibition factor (MIF) as potential targets for these distinct macrophage populations. Targeting these intra-tumoral macrophages in the LGG stage may attenuate their immunosuppressive properties and impair malignant progression.


Assuntos
Neoplasias Encefálicas , Glioma , Camundongos , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/patologia , Modelos Animais de Doenças , Glioma/genética , Glioma/patologia , Macrófagos/patologia , Análise de Sequência de RNA , Microambiente Tumoral
10.
Tob Control ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879095

RESUMO

OBJECTIVE: To report on longitudinal tobacco product cessation rates, by product type, among adults (ages 18+ years) in the USA between 2013 and 2019. METHODS: The Population Assessment of Tobacco and Health Study, a nationally representative, longitudinal cohort study was used to report on annual and biennial rates of the following three cessation behaviours across 2013-2019: (1) discontinuing tobacco product use (ie, transition from past 30-day use to no past 30-day use), (2) attempting to quit tobacco product use and (3) quitting tobacco product use among those who attempted to quit. Each cessation behaviour was evaluated separately for cigarettes, electronic nicotine delivery systems (ENDS), cigars, hookah and smokeless tobacco. Generalised estimating equations were used to evaluate linear and nonlinear trends in cessation rates across the study period. RESULTS: Between 2013 and 2019, rates of discontinuing cigarette smoking among adults in the USA statistically increased from 16% to 18%, though these were consistently lower than rates of discontinuing use of other tobacco products. Similarly, quit attempt rates and rates of quitting among attempters increased for cigarette smokers. However, rates of discontinuing ENDS use sharply declined across the study period, from 62% to 44%. CONCLUSIONS: Findings show that tobacco product cessation rates have been changing in recent years in the USA alongside the changing tobacco product marketplace and regulatory environment, though rates of discontinuing cigarette smoking remain relatively low. Findings can serve as a benchmark against which future cessation rates can be compared with evaluate the impacts of future tobacco regulatory policies.

11.
Mol Cancer Ther ; 21(8): 1296-1305, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35657345

RESUMO

Desmoplastic small round cell tumor (DSRCT) is a rare pediatric sarcoma with poor overall survival. This tumor is absolutely dependent on the continued expression and activity of its defining molecular lesion, the EWS-WT1 transcription factor. Unfortunately, the therapeutic targeting of transcription factors is challenging, and there is a critical need to identify compounds that inhibit EWS-WT1. Here we show that the compound lurbinectedin inhibits EWS-WT1 by redistributing the protein within the nucleus to the nucleolus. This nucleolar redistribution interferes with the activity of EWS-WT1 to reverse the expression of over 70% of the transcriptome. In addition, the compound blocks the expression of the EWS-WT1 fusion protein to inhibit cell proliferation at the lowest GI50 ever reported for this compound in any cell type. The effects occur at concentrations that are easily achievable in the clinic and translate to the in vivo setting to cause tumor regressions in multiple mice in a xenograft and PDX model of DSRCT. Importantly, this mechanism of nucleolar redistribution is also seen with wild-type EWSR1 and the related fusion protein EWS-FLI1. This provides evidence for a "class effect" for the more than 18 tumors driven by EWSR1 fusion proteins. More importantly, the data establish lurbinectedin as a promising clinical candidate for DSRCT.


Assuntos
Carbolinas , Tumor Desmoplásico de Pequenas Células Redondas , Compostos Heterocíclicos de 4 ou mais Anéis , Proteínas de Fusão Oncogênica , Sarcoma , Animais , Carbolinas/farmacologia , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Tumor Desmoplásico de Pequenas Células Redondas/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo
13.
J Immunol ; 205(8): 2301-2311, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938724

RESUMO

Tie2-expressing monocytes/macrophages (TEMs) are a distinct subset of proangiogenic monocytes selectively recruited to tumors in breast cancer. Because of the hypoxic nature of solid tumors, we investigated if oxygen, via hypoxia-inducible transcription factors HIF-1α and HIF-2α, regulates TEM function in the hypoxic tumor microenvironment. We orthotopically implanted PyMT breast tumor cells into the mammary fat pads of syngeneic LysMcre, HIF-1α fl/fl /LysMcre, or HIF-2α fl/fl /LysMcre mice and evaluated the tumor TEM population. There was no difference in the percentage of tumor macrophages among the mouse groups. In contrast, HIF-1α fl/fl /LysMcre mice had a significantly smaller percentage of tumor TEMs compared with control and HIF-2α fl/fl /LysMcre mice. Proangiogenic TEMs in macrophage HIF-2α-deficient tumors presented significantly more CD31+ microvessel density but exacerbated hypoxia and tissue necrosis. Reduced numbers of proangiogenic TEMs in macrophage HIF-1α-deficient tumors presented significantly less microvessel density but tumor vessels that were more functional as lectin injection revealed more perfusion, and functional electron paramagnetic resonance analysis revealed more oxygen in those tumors. Macrophage HIF-1α-deficient tumors also responded significantly to chemotherapy. These data introduce a previously undescribed and counterintuitive prohypoxia role for proangiogenic TEMs in breast cancer which is, in part, suppressed by HIF-2α.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Macrófagos/imunologia , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/imunologia , Proteínas de Neoplasias/imunologia , Receptor TIE-2/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Macrófagos/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Proteínas de Neoplasias/genética , Oxigênio/imunologia , Receptor TIE-2/genética
14.
Cancer Prev Res (Phila) ; 13(9): 747-760, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518084

RESUMO

Psychological stressors have been implicated in the progression of various tumor types. We investigated a role for stress in tumor immune cell chemotaxis in the B16F10 mouse model of malignant melanoma. We exposed female mice to 6-hour periods of restraint stress (RST) for 7 days, then implanted B16F10 malignant melanoma tumor cells and continued the RST paradigm for 14 additional days. We determined serum corticosterone and liver catecholamine concentrations in these mice. To evaluate the tumor microenvironment, we performed IHC and examined cytokine expression profiles using ELISA-based analysis of tumor homogenates. We found that tumors in mice subjected to RST grew significantly slower, had reduced tumor C-C motif ligand 2 (CCL2), and contained fewer F4/80-positive macrophages than tumors from unstressed mice. We observed a concomitant increase in norepinephrine among the RST mice. An in vitro assay confirmed that norepinephrine downregulates CCL2 production in both mouse and human macrophages, and that pretreatment with the pan-ß-adrenergic receptor inhibitor nadolol rescues this activity. Furthermore, RST had no effect on tumor growth in transgenic CCL2-deficient mice. This study suggests that stress reduces malignant melanoma by reducing recruitment of tumor-promoting macrophages by CCL2.


Assuntos
Quimiocina CCL2/genética , Melanoma Experimental/imunologia , Norepinefrina/metabolismo , Neoplasias Cutâneas/imunologia , Estresse Psicológico/imunologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Linhagem Celular Tumoral/transplante , Regulação para Baixo/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Transgênicos , Nadolol/farmacologia , Norepinefrina/antagonistas & inibidores , Restrição Física , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Estresse Psicológico/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
16.
Int J Cancer ; 146(11): 3184-3195, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621900

RESUMO

Ewing sarcoma (EWS) is the second most common and aggressive type of metastatic bone tumor in adolescents and young adults. There is unmet medical need to develop and test novel pharmacological targets and novel therapies to treat EWS. Here, we found that EWS expresses high levels of a p53 isoform, delta133p53. We further determined that aberrant expression of delta133p53 induced HGF secretion resulting in tumor growth and metastasis. Thereafter, we evaluated targeting EWS tumors with HGF receptor neutralizing antibody (AMG102) in preclinical studies. Surprisingly, we found that targeting EWS tumors with HGF receptor neutralizing antibody (AMG102) in combination with GD2-specific, CAR-reengineered T-cell therapy synergistically inhibited primary tumor growth and establishment of metastatic disease in preclinical models. Furthermore, our data suggested that AMG102 treatment alone might increase leukocyte infiltration including efficient CAR-T access into tumor mass and thereby improves its antitumor activity. Together, our findings warrant the development of novel CAR-T-cell therapies that incorporate HGF receptor neutralizing antibody to improve therapeutic potency, not only in EWS but also in tumors with aberrant activation of the HGF/c-MET pathway.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Receptores de Antígenos Quiméricos/imunologia , Sarcoma de Ewing/tratamento farmacológico , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/imunologia , Sarcoma de Ewing/patologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Ther Adv Endocrinol Metab ; 10: 2042018819863022, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31384417

RESUMO

It remains largely unknown as to why some individuals experience substantial weight loss with obesity interventions, while others receiving these same interventions do not. Person-specific characteristics likely play a significant role in this heterogeneity in treatment response. The practice of precision medicine accounts for an individual's genes, environment, and lifestyle when deciding upon treatment type and intensity in order to optimize benefit and minimize risk. In this review, we first discuss biopsychosocial determinants of obesity, as understanding the complexity of this disease is necessary for appreciating how difficult it is to develop individualized treatment plans. Next, we present literature on person-specific characteristics associated with, and predictive of, weight loss response to various obesity treatments including lifestyle modification, pharmacotherapy, metabolic and bariatric surgery, and medical devices. Finally, we discuss important gaps in our understanding of the causes of obesity in relation to the suboptimal treatment outcomes in certain patients, and offer solutions that may lead to the development of more effective and targeted obesity therapies.

18.
Curr Obes Rep ; 8(3): 201-209, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31054014

RESUMO

PURPOSE OF REVIEW: This review describes (1) the clinical assessment of pediatric patients with severe obesity, including a summary of salient biological, psychological, and social factors that may be contributing to the patient's obesity and (2) the current state of treatment strategies for pediatric severe obesity, including lifestyle modification therapy, pharmacotherapy, and metabolic and bariatric surgery. RECENT FINDINGS: Lifestyle modification therapy alone is insufficient for achieving clinically significant BMI reduction for most youth with severe obesity and metabolic and bariatric surgery, though effective and durable, is not a scalable treatment strategy. Pharmacological agents in the pipeline may 1 day fill this gap in treatment. Treatment of severe pediatric obesity requires a chronic care management approach utilizing multidisciplinary teams of health care providers and multi-pronged therapies.


Assuntos
Obesidade Mórbida/terapia , Obesidade Infantil/terapia , Adolescente , Fármacos Antiobesidade/uso terapêutico , Cirurgia Bariátrica/métodos , Terapia Comportamental/métodos , Índice de Massa Corporal , Criança , Dieta , Exercício Físico , Pessoal de Saúde , Humanos , Estilo de Vida , Avaliação das Necessidades , Obesidade Mórbida/psicologia , Obesidade Infantil/psicologia , Psicologia , Redução de Peso
20.
JCI Insight ; 3(16)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30135299

RESUMO

Osteosarcoma (OS), a malignant tumor of bone, kills through aggressive metastatic spread almost exclusively to the lung. Mechanisms driving this tropism for lung tissue remain unknown, though likely invoke specific interactions between tumor cells and other cells within the lung metastatic niche. Aberrant overexpression of ΔNp63 in OS cells directly drives production of IL-6 and CXCL8. All these factors were expressed at higher levels in OS lung metastases than in matched primary tumors from the same patients. Expression in cell lines correlated strongly with lung colonization efficiency in murine xenograft models. Lentivirus-mediated expression endowed poorly metastatic OS cells with increased metastatic capacity. Disruption of IL-6 and CXCL8 signaling using genetic or pharmaceutical inhibitors had minimal effects on tumor cell proliferation in vitro or in vivo, but combination treatment inhibited metastasis across multiple models of metastatic OS. Strong interactions occurred between OS cells and both primary bronchial epithelial cells and bronchial smooth muscle cells that drove feed-forward amplification of IL-6 and CXCL8 production. These results identify IL-6 and CXCL8 as primary mediators of OS lung tropism and suggest pleiotropic, redundant mechanisms by which they might effect metastasis. Combination therapy studies demonstrate proof of concept for targeting these tumor-lung interactions to affect metastatic disease.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/patologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Neoplasias Pulmonares/patologia , Adolescente , Adulto , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Osso e Ossos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Criança , Receptor gp130 de Citocina/antagonistas & inibidores , Receptor gp130 de Citocina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Seguimentos , Humanos , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Pulmão/patologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/prevenção & controle , Osteossarcoma/secundário , Cultura Primária de Células , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Receptores de Interleucina-8A/antagonistas & inibidores , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA