Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 432(1): 28-52, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31626805

RESUMO

Autophagy is a highly conserved catabolic pathway critical for stress responses and the maintenance of cellular homeostasis. Defective autophagy contributes to the etiology of an increasing number of diseases including cancer, neurodegeneration, and diabetes. Cells have to integrate complex metabolic information in order to counteract metabolic challenges ranging from carbon, nitrogen, and phosphate to metal ion limitations. An unparalleled variety of cytoplasmic materials in size and nature can be transported into the lytic compartment for degradation and recycling by transient double-membrane compartments, termed autophagosomes, during macroautophagy. In this review, we will outline our current mechanistic understanding of how cells regulate the initiation of macroautophagy to target substrates nonselectively or selectively. With an emphasis on findings in the yeast system, we will describe the emerging principles underlying the regulation of autophagy substrate recognition, which critically shapes the scope of stress-adapted autophagy responses upon diverse metabolic challenges.


Assuntos
Autofagia , Estresse Fisiológico , Aminoácidos/metabolismo , Animais , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Metais/metabolismo , Mitocôndrias/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Sci Rep ; 9(1): 6152, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992471

RESUMO

Aspirin is a widely used anti-inflammatory and antithrombotic drug also known in recent years for its promising chemopreventive antineoplastic properties, thought to be mediated in part by its ability to induce apoptotic cell death. However, the full range of mechanisms underlying aspirin's cancer-preventive properties is still elusive. In this study, we observed that aspirin impaired both the synthesis and transport of acetyl-coenzyme A (acetyl-CoA) into the mitochondria of manganese superoxide dismutase (MnSOD)-deficient Saccharomyces cerevisiae EG110 yeast cells, but not of the wild-type cells, grown aerobically in ethanol medium. This occurred at both the gene level, as indicated by microarray and qRT-PCR analyses, and at the protein level as indicated by enzyme assays. These results show that in redox-compromised MnSOD-deficient yeast cells, but not in wild-type cells, aspirin starves the mitochondria of acetyl-CoA and likely causes energy failure linked to mitochondrial damage, resulting in cell death. Since acetyl-CoA is one of the least-studied targets of aspirin in terms of the latter's propensity to prevent cancer, this work may provide further mechanistic insight into aspirin's chemopreventive behavior with respect to early stage cancer cells, which tend to have downregulated MnSOD and are also redox-compromised.


Assuntos
Acetilcoenzima A/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Fibrinolíticos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA