Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biomolecules ; 12(7)2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35883472

RESUMO

BACKGROUND: Tamoxifen-adapted MCF-7-Tam cells represent an in-vitro model for acquired tamoxifen resistance, which is still a problem in clinics. We here investigated the correlation of microRNA-, mRNA- and eukaryotic initiation factors (eIFs) expression in this model. METHODS: MicroRNA- and gene expression were analyzed by nCounter and qRT-PCR technology; eIFs by Western blotting. Protein translation mode was determined using a reporter gene assay. Cells were transfected with a miR-1972-mimic. RESULTS: miR-181b-5p,-3p and miR-455-5p were up-, miR-375, and miR-1972 down-regulated and are significant in survival analysis. About 5% of the predicted target genes were significantly altered. Pathway enrichment analysis suggested a contribution of the FoxO1 pathway. The ratio of polio-IRES driven to cap-dependent protein translation shifted towards cap-dependent initiation. Protein expression of eIF2A, -4G, -4H and -6 decreased, whereas eIF3H was higher in MCF-7-Tam. Significant correlations between tamoxifen-regulated miRNAs and eIFs were found in representative breast cancer cell lines. Transfection with a miR-1972-mimic reverses tamoxifen-induced expression for a subset of genes and increased proliferation in MCF-7, but reduced proliferation in MCF-7-Tam, especially in the presence of 4OH-tamoxifen. Migration was inhibited in MCF-7-Tam cells. Translation mode remained unaffected. CONCLUSIONS: miR-1972 contributes to the orchestration of gene-expression and physiological consequences of tamoxifen adaption.


Assuntos
Neoplasias da Mama , MicroRNAs , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , MicroRNAs/metabolismo , RNA Mensageiro/genética , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
2.
Cells ; 12(1)2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36611970

RESUMO

Betulinic acid (BA) is a natural compound well known for its anti-inflammatory, anti-viral, anti-bacterial, anti-malarial effects and anti-tumor properties. Its enhanced cytotoxicity in tumor cells and induction of cell death in various cancer entities qualifies BA as an interesting candidate for novel treatment concepts. Our analyses showed enhanced cytotoxicity and radiosensitization under hypoxic conditions in human breast cancer cells. So far, the underlying mechanisms are unknown. Therefore, we investigated the BA-treated human breast cancer cell lines MDA-MB-231 and MCF-7 under normoxic and hypoxic conditions based on microarray technology. Hypoxia and BA regulated a variety of genes in both breast cancer cell lines. KEGG pathway analysis identified an enrichment of the p53 pathway in MCF-7 cells (wtp53) under hypoxia. In MDA-MB-231 cells (mtp53) an additional BA incubation was required to activate the p53 signaling pathway. Fourteen down-regulated and up-regulated genes of the p53 pathway were selected for further validation via qRT-PCR in a panel of five breast cancer cell lines. The stress-induced gene Sestrin-2 (SESN2) was identified as one of the most strongly up-regulated genes after BA treatment. Knockdown of SESN2 enhanced BA-induced ROS production, DNA damage, radiosensitivity and reduced autophagy in breast cancer cells. Our results identified SESN2 as an important target to enhance the radiobiological and anti-tumor effects of BA on breast cancer cells.


Assuntos
Ácido Betulínico , Neoplasias da Mama , Humanos , Feminino , Triterpenos Pentacíclicos , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Tolerância a Radiação , Hipóxia , Sestrinas/metabolismo
3.
Breast Care (Basel) ; 16(6): 637-647, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35082572

RESUMO

INTRODUCTION: Triple-negative breast cancer (TNBC) is considered the most aggressive type of breast cancer (BC) with limited options for therapy. TNBC is a heterogeneous disease and tumors have been classified into TNBC subtypes using gene expression profiling to distinguish basal-like 1, basal-like 2, immunomodulatory, mesenchymal, mesenchymal stem-like, luminal androgen receptor (LAR), and one nonclassifiable group (called unstable). OBJECTIVES: The aim of this study was to verify the clinical relevance of molecular subtyping of TNBCs to improve the individual indication of systemic therapy. PATIENTS AND METHODS: Molecular subtyping was performed in 124 (82%) of 152 TNBC tumors that were obtained from a prospective, multicenter cohort including 1,270 histopathologically confirmed invasive, nonmetastatic BCs (NCT01592825). Treatment was guideline-based. TNBC subtypes were correlated with recurrence-free interval (RFI) and overall survival (OS) after 5 years of observation. RESULTS: Using PAM50 analysis, 87% of the tumors were typed as basal with an inferior clinical outcome compared to patients with nonbasal tumors. Using the TNBCtype-6 classifier, we identified 23 (15%) of TNBCs as LAR subtype. After standard adjuvant or neoadjuvant chemotherapy, patients with LAR subtype showed the most events for 5-year RFI (66.7 vs. 80.6%) and the poorest probability of 5-year OS (60.0 vs. 84.4%) compared to patients with non-LAR disease (RFI: adjusted hazard ratio [aHR] = 1.87, 95% confidence interval [CI] 0.69-5.05, p = 0.211; OS: aHR = 2.74, 95% CI 1.06-7.10, p = 0.037). CONCLUSION: Molecular analysis and subtyping of TNBC may be relevant to identify patients with LAR subtype. These cancers seem to be less sensitive to conventional chemotherapy, and new treatment options, including androgen receptor-blocking agents and immune checkpoint inhibitors, have to be explored.

4.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846951

RESUMO

Oral squamous cell carcinoma (OSCC) is the 10th most frequent human malignancy and is thus a global burden. Despite some progress in diagnosis and therapy, patients' overall survival rate, between 40 and 55%, has stagnated over the last four decades. Since the tumor node metastasis (TNM) system is not precise enough to predict the disease outcome, additive factors for diagnosis, prognosis, prediction and therapy resistance are urgently needed for OSCC. One promising candidate is the hypoxia inducible factor-1 (HIF-1), which functions as an early regulator of tumor aggressiveness and is a key promoter of energy adaptation. Other parameters comprise the composition of the tumor microenvironment, which determines the availability of nutrients and oxygen. In our opinion, these general processes are linked in the pathogenesis of OSCC. Based on this assumption, the review will summarize the major features of the HIF system-induced activities, its target proteins and related pathways of nutrient utilization and metabolism that are essential for the initiation, progression and therapeutic stratification of OSCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias Bucais/metabolismo , Animais , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Progressão da Doença , Humanos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Prognóstico , Microambiente Tumoral
5.
Genes (Basel) ; 11(4)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316383

RESUMO

Gene expression profiling data contains more information than is routinely extracted with standard approaches. Here we present Fold-Change-Specific Enrichment Analysis (FSEA), a new method for functional annotation of differentially expressed genes from transcriptome data with respect to their fold changes. FSEA identifies Gene Ontology (GO) terms, which are shared by the group of genes with a similar magnitude of response, and assesses these changes. GO terms found by FSEA are fold-change-specifically (e.g., weakly, moderately, or strongly) affected by a stimulus under investigation. We demonstrate that many responses to abiotic factors, mutations, treatments, and diseases occur in a fold-change-specific manner. FSEA analyses suggest that there are two prevailing responses of functionally-related gene groups, either weak or strong. Notably, some of the fold-change-specific GO terms are invisible by classical algorithms for functional gene enrichment, Singular Enrichment Analysis (SEA), and Gene Set Enrichment Analysis (GSEA). These are GO terms not enriched compared to the genome background but strictly regulated by a factor within specific fold-change intervals. FSEA analysis of a cancer-related transcriptome suggested that the gene groups with a tightly coordinated response can be the valuable source to search for possible regulators, markers, and therapeutic targets in oncogenic processes. Availability and Implementation: FSEA is implemented as the FoldGO Bioconductor R package and a web-server.


Assuntos
Algoritmos , Biomarcadores/análise , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Transcriptoma , Bases de Dados Genéticas , Humanos
6.
Elife ; 92020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32027307

RESUMO

Polyploidization, the increase in genome copies, is considered a major driving force for speciation. We have recently provided the first direct in planta evidence for polyspermy induced polyploidization. Capitalizing on a novel sco1-based polyspermy assay, we here show that polyspermy can selectively polyploidize the egg cell, while rendering the genome size of the ploidy-sensitive central cell unaffected. This unprecedented result indicates that polyspermy can bypass the triploid block, which is an established postzygotic polyploidization barrier. In fact, we here show that most polyspermy-derived seeds are insensitive to the triploid block suppressor admetos. The robustness of polyspermy-derived plants is evidenced by the first transcript profiling of triparental plants and our observation that these idiosyncratic organisms segregate tetraploid offspring within a single generation. Polyspermy-derived triparental plants are thus comparable to triploids recovered from interploidy crosses. Our results expand current polyploidization concepts and have important implications for plant breeding.


Ever since Darwin published his most famous book on the theory of evolution, scientists have sought to identify the mechanisms that drive the formation of new species. This is especially true for plant biologists who have long been fascinated by the extraordinary diversity of flowering plants.Many species of flowering plant first evolved after a dramatic increase in the DNA content of an individual plant, a process termed polyploidization. Most explanations for polyploidization involve a pollen grain making sperm that mistakenly contain two sets of chromosomes rather than one. Yet, it is difficult to reconcile this explanation with an important aspect of plant reproduction ­ the so-called "triploid block".Fertilization in flowering plants is more complicated than in animals. While one sperm fertilizes the egg cell to make the plant embryo, a second sperm from the same pollen grain must fertilize another cell to form the endosperm, the tissue that will nourish the embryo as it develops. This means that sperm with twice the normal number of chromosomes would affect the DNA content of both the embryo and the endosperm. Yet, an endosperm that receives extra paternal DNA typically halts the development of the seed via a process known as the triploid block, meaning it was not clear how often this process would actually result in a polyploid plant.In 2017, researchers reported that plants can, on rare occasions, generate polyploid offspring via a different route: the fertilization of one egg with two sperm rather than one. Now, Mao et al. ­ who include several researchers involved in the 2017 study ­ show that this process, termed "polyspermy", can introduce extra copies of DNA into just the egg cell, meaning it can bypass the triploid block of the endosperm.The experiments involved a model plant called Arabidopsis, and a screen of over 55,000 seeds identified about a dozen with embryos that had three parents, one mother and two fathers. Notably, most of these three-parent embryos developed in seeds that contained endosperm with the regular number of chromosomes and hence escaped the triploid block.These new results show that polyspermy provides plants with a means to essentially sneak extra copies of DNA 'behind the back' of the DNA-sensitive endosperm and into the next generation. They also give new insight in how polyploidization may have shaped the evolution of flowering plants and have important implications for agriculture where the breeding of new "hybrid" crops has often been limited by incompatibilities in the endosperm.


Assuntos
Fertilização , Melhoramento Vegetal , Triploidia , Animais , Fenômenos Fisiológicos Vegetais , RNA Mensageiro/genética , Sementes
7.
Int J Mol Sci ; 20(19)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554283

RESUMO

The transcription factor hypoxia-inducible factor 1 (HIF1) is the crucial regulator of genes that are involved in metabolism under hypoxic conditions, but information regarding the transcriptional activity of HIF1 in normoxic metabolism is limited. Different tumor cells were treated under normoxic and hypoxic conditions with various drugs that affect cellular metabolism. HIF1α was silenced by siRNA in normoxic/hypoxic tumor cells, before RNA sequencing and bioinformatics analyses were performed while using the breast cancer cell line MDA-MB-231 as a model. Differentially expressed genes were further analyzed and validated by qPCR, while the activity of the metabolites was determined by enzyme assays. Under normoxic conditions, HIF1 activity was significantly increased by (i) glutamine metabolism, which was associated with the release of ammonium, and it was decreased by (ii) acetylation via acetyl CoA synthetase (ACSS2) or ATP citrate lyase (ACLY), respectively, and (iii) the presence of L-ascorbic acid, citrate, or acetyl-CoA. Interestingly, acetylsalicylic acid, ibuprofen, L-ascorbic acid, and citrate each significantly destabilized HIF1α only under normoxia. The results from the deep sequence analyses indicated that, in HIF1-siRNA silenced MDA-MB-231 cells, 231 genes under normoxia and 1384 genes under hypoxia were transcriptionally significant deregulated in a HIF1-dependent manner. Focusing on glycolysis genes, it was confirmed that HIF1 significantly regulated six normoxic and 16 hypoxic glycolysis-associated gene transcripts. However, the results from the targeted metabolome analyses revealed that HIF1 activity affected neither the consumption of glucose nor the release of ammonium or lactate; however, it significantly inhibited the release of the amino acid alanine. This study comprehensively investigated, for the first time, how normoxic HIF1 is stabilized, and it analyzed the possible function of normoxic HIF1 in the transcriptome and metabolic processes of tumor cells in a breast cancer cell model. Furthermore, these data imply that HIF1 compensates for the metabolic outcomes of glutaminolysis and, subsequently, the Warburg effect might be a direct consequence of the altered amino acid metabolism in tumor cells.


Assuntos
Metabolismo Energético , Glutamina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/metabolismo , Acetilação , Ácido Ascórbico/metabolismo , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicólise , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias/genética , Neoplasias/patologia , Estabilidade Proteica , RNA Interferente Pequeno/genética
8.
BMC Bioinformatics ; 20(1): 434, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438847

RESUMO

BACKGROUND: The epidermal growth factor receptor (EGFR) is a major regulator of proliferation in tumor cells. Elevated expression levels of EGFR are associated with prognosis and clinical outcomes of patients in a variety of tumor types. There are at least four splice variants of the mRNA encoding four protein isoforms of EGFR in humans, named I through IV. EGFR isoform I is the full-length protein, whereas isoforms II-IV are shorter protein isoforms. Nevertheless, all EGFR isoforms bind the epidermal growth factor (EGF). Although EGFR is an essential target of long-established and successful tumor therapeutics, the exact function and biomarker potential of alternative EGFR isoforms II-IV are unclear, motivating more in-depth analyses. Hence, we analyzed transcriptome data from glioblastoma cell line SF767 to predict target genes regulated by EGFR isoforms II-IV, but not by EGFR isoform I nor other receptors such as HER2, HER3, or HER4. RESULTS: We analyzed the differential expression of potential target genes in a glioblastoma cell line in two nested RNAi experimental conditions and one negative control, contrasting expression with EGF stimulation against expression without EGF stimulation. In one RNAi experiment, we selectively knocked down EGFR splice variant I, while in the other we knocked down all four EGFR splice variants, so the associated effects of EGFR II-IV knock-down can only be inferred indirectly. For this type of nested experimental design, we developed a two-step bioinformatics approach based on the Bayesian Information Criterion for predicting putative target genes of EGFR isoforms II-IV. Finally, we experimentally validated a set of six putative target genes, and we found that qPCR validations confirmed the predictions in all cases. CONCLUSIONS: By performing RNAi experiments for three poorly investigated EGFR isoforms, we were able to successfully predict 1140 putative target genes specifically regulated by EGFR isoforms II-IV using the developed Bayesian Gene Selection Criterion (BGSC) approach. This approach is easily utilizable for the analysis of data of other nested experimental designs, and we provide an implementation in R that is easily adaptable to similar data or experimental designs together with all raw datasets used in this study in the BGSC repository, https://github.com/GrosseLab/BGSC .


Assuntos
Processamento Alternativo/genética , Biologia Computacional/métodos , Receptores ErbB/genética , Glioblastoma/genética , Teorema de Bayes , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Probabilidade , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
9.
J Nutr Biochem ; 67: 149-160, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30925412

RESUMO

Epidemiological studies revealed that dietary proteins can contribute to the modulation of the cardiovascular disease risk. Still, direct effects of dietary proteins on serum metabolites and other health-modulating factors have not been fully explored. Here, we compared the effects of dietary lupin protein with the effects of beef protein and casein on the serum metabolite profile, cardiovascular risk markers and the fecal microbiome. Pigs were fed diets containing 15% of the respective proteins for 4 weeks. A classification analysis of the serum metabolites revealed six biomarker sets of two metabolites each that discriminated between the intake of lupin protein, lean beef or casein. These biomarker sets included 1- and 3-methylhistidine, betaine, carnitine, homoarginine and methionine. The study revealed differences in the serum levels of the metabolites 1- and 3- methylhistidine, homoarginine, methionine and homocysteine, which are involved in the one-carbon cycle. However, these changes were not associated with differences in the methylation capacity or the histone methylation pattern. With the exception of serum homocysteine and homoarginine levels, other cardiovascular risk markers, such as the homeostatic model assessment index, trimethylamine-N-oxide and lipids, were not influenced by the dietary protein source. However, the composition of the fecal microorganisms was markedly changed by the dietary protein source. Lupin-protein-fed pigs exhibited more species from the phyla Bacteroidetes and Firmicutes than the other two groups. In conclusion, different dietary protein sources induce distinct serum metabolic fingerprints, have an impact on the cardiovascular risk and modulate the composition of the fecal microbiome.


Assuntos
Aminoácidos/análise , Proteínas Alimentares/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/metabolismo , Acetilação , Aminoácidos/sangue , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Caseínas/farmacologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Histonas/metabolismo , Lipídeos/sangue , Fígado/efeitos dos fármacos , Metilação , Carne Vermelha , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Armazenamento de Sementes/farmacologia , Suínos
10.
RNA Biol ; 16(5): 661-674, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760083

RESUMO

Acquired tamoxifen resistance is a persistent problem for the treatment of estrogen receptor positive, premenopausal breast cancer patients and predictive biomarkers are still elusive. We here analyzed gene expression changes in a cellular model to identify early and late changes upon tamoxifen exposure and thereby novel prognostic biomarkers. Estrogen receptor positive MCF-7 cells were incubated with 4OH-tamoxifen (10 nM) and gene expression analyzed by array hybridization during 12 weeks. Array results were confirmed by nCounter- and qRT-PCR technique. Pathway enrichment analysis revealed that early responses concerned mainly amine synthesis and NRF2-related signaling and evolved into a stable gene expression pattern within 4 weeks characterized by changes in glucuronidation-, estrogen metabolism-, nuclear receptor- and interferon signaling pathways. As a large number of long non coding RNAs was subject to regulation, we investigated 5 of these (linc01213, linc00632 linc0992, LOC101929547 and XR_133213) in more detail. From these, only linc01213 was upregulated but all were less abundant in estrogen-receptor negative cell lines (MDA-MB 231, SKBR-3 and UACC3199). In a web-based survival analysis linc01213 and linc00632 turned out to have prognostic impact. Linc01213 was investigated further by plasmid-mediated over-expression as well as siRNA down-regulation in MCF-7 cells. Nevertheless, this had no effect on proliferation or expression of tamoxifen regulated genes, but migration was increased. In conclusion, the cellular model identified a set of lincRNAs with prognostic relevance for breast cancer. One of these, linc01213 although regulated by 4OH-tamoxifen, is not a central regulator of tamoxifen adaption, but interferes with the regulation of migration.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica/métodos , RNA Longo não Codificante/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células MCF-7 , Prognóstico , Receptores de Estrogênio/metabolismo , Tamoxifeno , Fatores de Tempo
11.
Front Microbiol ; 9: 2384, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455669

RESUMO

More than eight percent of the human genome consists of human endogenous retroviruses (HERVs). Typically, the expression of HERVs is repressed, but varying activities of HERVs have been observed in diseases ranging from cancer to neuro-degeneration. Such activities can include the transcription of HERV-derived open reading frames, which can be translated into proteins. However, as a consequence of mutations that disrupt open reading frames, most HERV-like sequences have lost their protein-coding capacity. Nevertheless, these loci can still influence the expression of adjacent genes and, hence, mediate biological effects. Here, we present WebHERV (http://calypso.informatik.uni-halle.de/WebHERV/), a web server that enables the computational prediction of active HERV-like sequences in the human genome based on a comparison of genome coordinates of expressed sequences uploaded by the user and genome coordinates of HERV-like sequences stored in the specialized key-value store DRUMS. Using WebHERV, we predicted putative candidates of active HERV-like sequences in Hodgkin lymphoma (HL) cell lines, validated one of them by a modified SMART (switching mechanism at 5' end of RNA template) technique, and identified a new alternative transcription start site for cytochrome P450, family 4, subfamily Z, polypeptide 1 (CYP4Z1).

12.
mBio ; 9(2)2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691336

RESUMO

Many viral suppressors (VSRs) counteract antiviral RNA silencing, a central component of the plant's immune response by sequestration of virus-derived antiviral small interfering RNAs (siRNAs). Here, we addressed how VSRs affect the activities of cellular microRNAs (miRNAs) during a viral infection by characterizing the interactions of two unrelated VSRs, the Tombusvirus p19 and the Cucumovirus 2b, with miRNA 162 (miR162), miR168, and miR403. These miRNAs regulate the expression of the important silencing factors Dicer-like protein 1 (DCL1) and Argonaute proteins 1 and 2 (AGO1 and AGO2), respectively. Interestingly, while the two VSRs showed similar binding profiles, the miRNAs were bound with significantly different affinities, for example, with the affinity of miR162 greatly exceeding that of miR168. In vitro silencing experiments revealed that p19 and 2b affect miRNA-mediated silencing of the DCL1, AGO1, and AGO2 mRNAs in strict accordance with the VSR's miRNA-binding profiles. In Tombusvirus-infected plants, the miRNA-binding behavior of p19 closely corresponded to that in vitro Most importantly, in contrast to controls with a Δp19 virus, infections with wild-type (wt) virus led to changes of the levels of the miRNA-targeted mRNAs, and these changes correlated with the miRNA-binding preferences of p19. This was observed exclusively in the early stage of infection when viral genomes are proposed to be susceptible to silencing and viral siRNA (vsiRNA) concentrations are low. Accordingly, our study suggests that differential binding of miRNAs by VSRs is a widespread viral mechanism to coordinately modulate cellular gene expression and the antiviral immune response during infection initiation.IMPORTANCE Plant viruses manipulate their hosts in various ways. Viral suppressor proteins (VSRs) interfere with the plant's immune response by sequestering small, antivirally acting vsiRNAs, which are processed from viral RNAs during the plant's RNA-silencing response. Here, we examined the effects of VSRs on cellular microRNAs (miRNAs), which show a high degree of similarity with vsiRNAs. Binding experiments with two unrelated VSRs and three important regulatory miRNAs revealed that the proteins exhibit similar miRNA-binding profiles but bind different miRNAs at considerably different affinities. Most interestingly, experiments in plants showed that in the early infection phase, the Tombusvirus VSR p19 modulates the activity of these miRNAs on their target mRNAs very differently and that this differential regulation strictly correlates with the binding affinities of p19 for the respective miRNAs. Our data suggest that VSRs may specifically control plant gene expression and the early immune response by differential sequestration of miRNAs.


Assuntos
Cucumovirus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal , Tombusvirus/crescimento & desenvolvimento , Arabidopsis , Cucumovirus/imunologia , Doenças das Plantas/virologia , Nicotiana , Tombusvirus/imunologia
13.
Ecol Lett ; 20(12): 1576-1590, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29027325

RESUMO

Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.


Assuntos
Ecologia , Epigênese Genética , Plantas , Metilação de DNA , Ecossistema
14.
Clin Oral Investig ; 21(1): 211-224, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26955835

RESUMO

OBJECTIVES: The stabilization of the transcription factor and prognostic tumor marker hypoxia-inducible factor 1α (HIF1α) is considered to be crucial for cellular metabolic adaptations to hypoxia. However, HIF1α has also been shown to accumulate under normoxic conditions, although this phenomenon is poorly understood. METHODS: We investigated the conditions for normoxic HIF1α stabilization in different tumor cell lines (e.g., two mammary carcinoma cell lines and three oral squamous cell carcinoma cell lines) via Western blot analysis or immunohistochemical staining. The transcriptional activity of HIF1 was demonstrated by analyzing the messenger RNA (mRNA) expression of the HIF1 target carbonic anhydrase 9 (CA9) via PCR. RESULTS: Our data demonstrate that the combined incubation of tumor cells with glutamine and growth factors (e.g., EGF, insulin, and serum) mediates the normoxic accumulation of HIF1α in vitro. Consequently, the inhibition of glutaminolysis by a glutaminase inhibitor blocked the normoxic accumulation of HIF1α. Additionally, the normoxic HIF1α protein displayed nuclear translocation and transcriptional activity, which was confirmed by the induction of CA9 mRNA expression. Furthermore, the normoxic accumulation of HIF1α was associated with impaired proliferation of tumor cells. Finally, ammonia, the toxic waste product of glutaminolysis, induced a normoxic accumulation of HIF1α to the same extent as glutamine. CONCLUSION: Our study suggests that HIF1α is involved in the regulation of glutamine metabolism and the cellular levels of the toxic metabolic waste product ammonia under normoxia. Hence, our results, together with data presented in the literature, support the hypothesis that HIF1α and its target genes play a crucial role in metabolic pathways, such as glutaminolysis and glycolysis, under both hypoxic and normoxic conditions. CLINICAL RELEVANCE: Therefore, the inhibition of HIF1α (and/or HIF1α target genes) could emerge as a promising therapeutic approach that would result in the accumulation of toxic metabolic waste products in tumor cells as well as the reduction of their nutrition and energy supply.


Assuntos
Anidrase Carbônica IX/metabolismo , Glutamina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Amônia/metabolismo , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Hipóxia/metabolismo , Reação em Cadeia da Polimerase , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo
15.
Sci Rep ; 6: 34589, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713552

RESUMO

The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.


Assuntos
Ebolavirus/metabolismo , Regulação da Expressão Gênica , Doença pelo Vírus Ebola/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/metabolismo , Transdução de Sinais , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Quirópteros , Humanos
16.
BMC Bioinformatics ; 16: 387, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26577052

RESUMO

BACKGROUND: For three decades, sequence logos are the de facto standard for the visualization of sequence motifs in biology and bioinformatics. Reasons for this success story are their simplicity and clarity. The number of inferred and published motifs grows with the number of data sets and motif extraction algorithms. Hence, it becomes more and more important to perceive differences between motifs. However, motif differences are hard to detect from individual sequence logos in case of multiple motifs for one transcription factor, highly similar binding motifs of different transcription factors, or multiple motifs for one protein domain. RESULTS: Here, we present DiffLogo, a freely available, extensible, and user-friendly R package for visualizing motif differences. DiffLogo is capable of showing differences between DNA motifs as well as protein motifs in a pair-wise manner resulting in publication-ready figures. In case of more than two motifs, DiffLogo is capable of visualizing pair-wise differences in a tabular form. Here, the motifs are ordered by similarity, and the difference logos are colored for clarity. We demonstrate the benefit of DiffLogo on CTCF motifs from different human cell lines, on E-box motifs of three basic helix-loop-helix transcription factors as examples for comparison of DNA motifs, and on F-box domains from three different families as example for comparison of protein motifs. CONCLUSIONS: DiffLogo provides an intuitive visualization of motif differences. It enables the illustration and investigation of differences between highly similar motifs such as binding patterns of transcription factors for different cell types, treatments, and algorithmic approaches.


Assuntos
Algoritmos , Motivos de Aminoácidos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Gráficos por Computador , Motivos de Nucleotídeos/genética , Análise de Sequência de DNA/métodos , Software , Fator de Ligação a CCCTC , Biologia Computacional/métodos , Humanos , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Células Tumorais Cultivadas
17.
PLoS One ; 10(10): e0139464, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26440109

RESUMO

Cellular responses to starvation are of ancient origin since nutrient limitation has always been a common challenge to the stability of living systems. Hence, signaling molecules involved in sensing or transducing information about limiting metabolites are highly conserved, whereas transcription factors and the genes they regulate have diverged. In eukaryotes the AMP-activated protein kinase (AMPK) functions as a central regulator of cellular energy homeostasis. The yeast AMPK ortholog SNF1 controls the transcriptional network that counteracts carbon starvation conditions by regulating a set of transcription factors. Among those Cat8 and Sip4 have overlapping DNA-binding specificity for so-called carbon source responsive elements and induce target genes upon SNF1 activation. To analyze the evolution of the Cat8-Sip4 controlled transcriptional network we have compared the response to carbon limitation of Saccharomyces cerevisiae to that of Kluyveromyces lactis. In high glucose, S. cerevisiae displays tumor cell-like aerobic fermentation and repression of respiration (Crabtree-positive) while K. lactis has a respiratory-fermentative life-style, respiration being regulated by oxygen availability (Crabtree-negative), which is typical for many yeasts and for differentiated higher cells. We demonstrate divergent evolution of the Cat8-Sip4 network and present evidence that a role of Sip4 in controlling anabolic metabolism has been lost in the Saccharomyces lineage. We find that in K. lactis, but not in S. cerevisiae, the Sip4 protein plays an essential role in C2 carbon assimilation including induction of the glyoxylate cycle and the carnitine shuttle genes. Induction of KlSIP4 gene expression by KlCat8 is essential under these growth conditions and a primary function of KlCat8. Both KlCat8 and KlSip4 are involved in the regulation of lactose metabolism in K. lactis. In chromatin-immunoprecipitation experiments we demonstrate binding of both, KlSip4 and KlCat8, to selected CSREs and provide evidence that KlSip4 counteracts KlCat8-mediated transcription activation by competing for binding to some but not all CSREs. The finding that the hierarchical relationship of these transcription factors differs between K. lactis and S. cerevisiae and that the sets of target genes have diverged contributes to explaining the phenotypic differences in metabolic life-style.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ativação Transcricional
18.
FASEB J ; 29(7): 2905-11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25825462

RESUMO

Peroxisome proliferator-activated receptor-α (PPARα) plays a pivotal role in regulating metabolic response to fasting and is an inhibitor of inflammatory pathways in immune cells. It represents a therapeutic target for treatment of several diseases, mainly hyperlipidemia. To shed light on PPARα expression changes in response to fasting, young healthy male and female volunteers were fed or fasted for 24 hours. Monocytes were analyzed every 2 hours to compile both profiles of mRNA and protein expression of PPARα and its interactive partner, the circadian pacemaker brain and muscle aryl hydrocarbon receptor nuclear translocator like-1 (BMAL1). We found that women change their diurnal expression profiles of PPARα and BMAL1 when switching from the fed to the fasted state, whereas men do not. Interestingly, the PPARα and BMAL1 profiles of men and women in the fed state are different, whereas the profiles in the fasted state are virtually identical. The finding of diametrically opposite responses of male and female PPARα expression in the fed state might have practical implication in human medicine as PPARα activators like fibrates are used for the therapy of chronic lymphocytic leukemia, microvascular complications in diabetes, and kidney diseases.


Assuntos
Ritmo Circadiano/fisiologia , Jejum/metabolismo , Monócitos/metabolismo , PPAR alfa/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Adulto , Ritmo Circadiano/genética , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , PPAR alfa/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caracteres Sexuais , Adulto Jovem
19.
PLoS One ; 9(1): e85629, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465627

RESUMO

The binding affinity of DNA-binding proteins such as transcription factors is mainly determined by the base composition of the corresponding binding site on the DNA strand. Most proteins do not bind only a single sequence, but rather a set of sequences, which may be modeled by a sequence motif. Algorithms for de novo motif discovery differ in their promoter models, learning approaches, and other aspects, but typically use the statistically simple position weight matrix model for the motif, which assumes statistical independence among all nucleotides. However, there is no clear justification for that assumption, leading to an ongoing debate about the importance of modeling dependencies between nucleotides within binding sites. In the past, modeling statistical dependencies within binding sites has been hampered by the problem of limited data. With the rise of high-throughput technologies such as ChIP-seq, this situation has now changed, making it possible to make use of statistical dependencies effectively. In this work, we investigate the presence of statistical dependencies in binding sites of the human enhancer-blocking insulator protein CTCF by using the recently developed model class of inhomogeneous parsimonious Markov models, which is capable of modeling complex dependencies while avoiding overfitting. These findings lead to a more detailed characterization of the CTCF binding motif, which is only poorly represented by independent nucleotide frequencies at several positions, predominantly at the 3' end.


Assuntos
Algoritmos , Proteínas de Ligação a DNA/genética , Modelos Genéticos , Motivos de Nucleotídeos/genética , Proteínas Repressoras/genética , Sequência de Bases , Sítios de Ligação/genética , Fator de Ligação a CCCTC , Linhagem Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Células Hep G2 , Humanos , Células K562 , Células MCF-7 , Cadeias de Markov , Ligação Proteica , Proteínas Repressoras/metabolismo
20.
Nucleic Acids Res ; 41(17): 8045-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23821666

RESUMO

The mineralocorticoid receptor (MR) is a ligand-induced transcription factor belonging to the steroid receptor family and involved in water-electrolyte homeostasis, blood pressure regulation, inflammation and fibrosis in the renocardiovascular system. The MR shares a common hormone-response-element with the glucocorticoid receptor but nevertheless elicits MR-specific effects including enhanced epidermal growth factor receptor (EGFR) expression via unknown mechanisms. The EGFR is a receptor tyrosine kinase that leads to activation of MAP kinases, but that can also function as a signal transducer for other signaling pathways. In the present study, we mechanistically investigate the interaction between a newly discovered MR- but not glucocorticoid receptor- responsive-element (=MRE1) of the EGFR promoter, specificity protein 1 (SP1) and MR to gain general insights into MR-specificity. Biological relevance of the interaction for EGFR expression and consequently for different signaling pathways in general is demonstrated in human, rat and murine vascular smooth muscle cells and cells of EGFR knockout mice. A genome-wide promoter search for identical binding regions followed by quantitative PCR validation suggests that the identified MR-SP1-MRE1 interaction might be applicable to other genes. Overall, a novel principle of MR-specific gene expression is explored that applies to the pathophysiologically relevant expression of the EGFR and potentially also to other genes.


Assuntos
Receptores ErbB/genética , Receptores de Mineralocorticoides/metabolismo , Elementos de Resposta , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Aldosterona/farmacologia , Animais , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Ratos , Receptores de Mineralocorticoides/química , Transdução de Sinais , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp3/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA