Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501427

RESUMO

Citrus is one of the most important fruit crops in Mediterranean countries such as Spain, which is one of the main citrus-producing countries worldwide. Soil-borne pathogens, such as Rosellinia necatrix, are relevant limiting biotic factors in fruit trees, due to their tricky management. This fungus is a polyphagous plant pathogen with worldwide distribution, causing white root rot in woody crops, including citrus trees in Spain. The objective of this study was to evaluate the tolerance of new plant material against R. necatrix infection. Therefore, plants of 12 different citrus rootstocks were inoculated with one R. necatrix isolate. During the assay, and periodically, above-ground symptoms and chlorophyll content were evaluated. At the end of the experiment, leaf area and plant biomass measures were obtained. Rootstocks B11R5T64 and B11R5T60 achieved the lowest disease incidence of symptoms and reduction of biomass, and were similar to their respective controls in chlorophyll content and leaf area. Carrizo citrange, CL-5146 and UFR-5 were the most affected rootstocks in symptoms and biomass reduction. This work provides information about R. necatrix-tolerant citrus rootstocks, which can constitute a new integrated, sustainable and effective long-term strategy to avoid white root rot.

2.
Plant Cell Rep ; 41(12): 2305-2320, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36107199

RESUMO

KEY MESSAGE: Overexpression of the salicylic acid binding protein 2 (SABP2) gene from Tobacco results in enhanced tolerance to Huanglongbing (HLB; citrus greening disease) in transgenic sweet oranges. Huanglongbing (HLB), the most destructive citrus disease, is caused by Candidatus Liberibacter asiaticus (CaLas). Currently, no cure for this disease exists, and all commercially planted cultivars are highly susceptible. Salicylic Acid Binding Protein 2 (SABP2) is a well-characterized protein essential for establishing systemic acquired resistance (SAR) in tobacco. The constitutive over expression of SABP2 from tobacco (NtSABP2) in 'Hamlin' sweet orange resulted in the production of several transgenic lines with variable transcript levels. Transient expression of the NtSABP2-EGFP fusion protein in Nicotiana benthamiana plants demonstrated that NtSABP2 was cytosolic in its subcellular localization. In a long-term field study, we identified a SABP2 transgenic line with significantly reduced HLB symptoms that maintained a consistently low CaLas titer. Transcriptome analysis of this selected transgenic line demonstrated upregulation of several genes related to plant defense and SAR pathways. Genes, such as NPR family genes and those coding for monooxygenases and lipoxygenases, were upregulated in the 35S-NtSABP2 overexpressing line and might be candidates for incorporation into our citrus improvement program.


Assuntos
Citrus sinensis , Citrus , Rhizobiaceae , Nicotiana/genética , Citrus/genética , Doenças das Plantas/genética , Citrus sinensis/genética , Citrus sinensis/metabolismo , Liberibacter , Ácido Salicílico/metabolismo
3.
Plant Physiol ; 190(4): 2519-2538, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36135821

RESUMO

Polyploidization leads to novel phenotypes and is a major force in evolution. However, the relationship between the evolution of new traits and variations in the post-translational modifications (PTM) of proteins during polyploidization has not been studied. Acetylation of lysine residues is a common protein PTM that plays a critical regulatory role in central metabolism. To test whether changes in metabolism in citrus fruit is associated with the reprogramming of lysine acetylation (Kac) in non-histone proteins during allotetraploidization, we performed a global acetylome analysis of fruits from a synthetic allotetraploid citrus and its diploid parents. A total of 4,175 Kac sites were identified on 1,640 proteins involved in a wide range of fruit traits. In the allotetraploid, parental dominance (i.e. resemblance to one of the two parents) in specific fruit traits, such as fruit acidity and flavonol metabolism, was highly associated with parental Kac level dominance in pertinent enzymes. This association is due to Kac-mediated regulation of enzyme activity. Moreover, protein Kac probably contributes to the discordance between the transcriptomic and proteomic variations during allotetraploidization. The acetylome reprogramming can be partially explained by the expression pattern of several lysine deacetylases (KDACs). Overexpression of silent information regulator 2 (CgSRT2) and histone deacetylase 8 (CgHDA8) diverted metabolic flux from primary metabolism to secondary metabolism and partially restored a metabolic status to the allotetraploid, which expressed attenuated levels of CgSRT2 and CgHDA8. Additionally, KDAC inhibitor treatment greatly altered metabolism in citrus fruit. Collectively, these findings reveal the important role of acetylome reprogramming in trait evolution during polyploidization.


Assuntos
Citrus , Proteômica , Lisina/metabolismo , Proteoma/genética , Proteoma/metabolismo , Frutas/metabolismo , Citrus/genética , Citrus/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional
4.
Plant Cell Rep ; 39(12): 1609-1622, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32897396

RESUMO

KEY MESSAGE: The physical locations of citrus centromere are revealed by combining genetic and immunological assays for the first time and nine citrus centromere-specific markers for cytogenetics are mined. Centromere localization is challenging, because highly redundant repetitive sequences in centromeric regions make sequence assembly difficult. Although several citrus genomes have been released, the centromeric regions and their characteristics remain to be elucidated. Here, we mapped citrus centromeres through half-tetrad analysis (HTA) that included the genotyping of 54 tetraploid hybrids derived from 2n megagametophytes of Nadorcott tangor with 212 single nucleotide polymorphism (SNP) markers. The sizes of centromeric regions, which estimated based on the heterozygosity restitution rate pattern along the chromosomes, ranged from 1.12 to 18.19 Mb. We also profiled the binding sequences with the centromere-specific histone variant CenH3 by chromatin immunoprecipitation sequencing (ChIP-seq). Based on the positions of the top ten CenH3-enriched contigs, the sizes of centromeric regions were estimated to range from 0.01 to 7.60 Mb and were either adjacent to or included in the centromeric regions identified by HTA. We used DNA probes from two repeats selected from the centromeric regions and seven CenH3-binding centromeric repeats to verify centromeric locations by fluorescence in situ hybridization (FISH). Centromere localization in citrus will contribute to the mining of centromeric/pericentromeric markers, thus to facilitate the rapid identification of mechanisms underlying 2n gamete formation and serve the polyploidy breeding.


Assuntos
Centrômero/genética , Citrus/genética , Citogenética/métodos , Especificidade de Anticorpos , Sequenciamento de Cromatina por Imunoprecipitação , Genes de Plantas/imunologia , Técnicas de Genotipagem/métodos , Hibridização in Situ Fluorescente , Polimorfismo de Nucleotídeo Único , Tetraploidia
5.
Plant Cell Rep ; 33(10): 1641-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24972825

RESUMO

KEY MESSAGE: 2 n megagametophyte formation plays an important role in polyploidization in polyembryonic citrus and is valuable for plant improvement. Tetraploid plants are frequently observed in the seedlings of diploid polyembryonic citrus genotypes. However, the mechanisms underlying the formation of tetraploids are still indistinct when apomictic citrus genotypes are used as female parent to cross with tetraploids. Herein, 54 tetraploid progenies, which were unexpectedly obtained previously from four 2x × 4x crosses using polyembryonic 'Nadorcott' tangor as seed parent, were analyzed by 22 simple sequence repeat (SSR) markers, aiming to reveal their genetic origin and the mechanism underlying 2n megagametophyte formation. The results showed that 13 tetraploids from all these four crosses were doubled diploids as indicated by their identical SSR allelic profile with their female parent; while the remaining 41 tetraploids apparently exhibited paternally derived alleles, which confirmed their zygotic origin. Furthermore, the genotyping of all hybrids indicated that all of them arose from 2n megagametophytes. Based on the genotypes of 2n megagametophytes, the analysis of maternal heterozygosity restitution (HR) for each marker showed that it varied from 0.00 to 87.80 % with a mean value of 40.89 %. In addition, it was observed that 13 markers displayed a lower rate than 50 %. On the basis of the above results, it can be speculated that the second division restitution (SDR) is the mechanism underlying the 2n megagametophyte formation in 'Nadorcott' tangor. The elucidation of the mechanism of 2n megagametophyte formation will be of great help to optimize further sexual hybridization for polyploids in citrus.


Assuntos
Citrus/genética , Tetraploidia , Diploide , Genótipo , Plântula/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA