Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449525

RESUMO

Plant roots navigate in the soil environment following the gravity vector. Cell divisions in the meristem and rapid cell growth in the elongation zone propel the root tips through the soil. Actively elongating cells acidify their apoplast to enable cell wall extension by the activity of plasma membrane AHA H+-ATPases. The phytohormone auxin, central regulator of gravitropic response and root development, inhibits root cell growth, likely by rising the pH of the apoplast. However, the role of auxin in the regulation of the apoplastic pH gradient along the root tip is unclear. Here, we show, by using an improved method for visualization and quantification of root surface pH, that the Arabidopsis thaliana root surface pH shows distinct acidic and alkaline zones, which are not primarily determined by the activity of AHA H+-ATPases. Instead, the distinct domain of alkaline pH in the root transition zone is controlled by a rapid auxin response module, consisting of the AUX1 auxin influx carrier, the AFB1 auxin co-receptor, and the CNCG14 calcium channel. We demonstrate that the rapid auxin response pathway is required for an efficient navigation of the root tip.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Concentração de Íons de Hidrogênio , Solo , Adenosina Trifosfatases/metabolismo , Regulação da Expressão Gênica de Plantas , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo
3.
Plant J ; 99(5): 910-923, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31033043

RESUMO

Calcium gradients underlie polarization in eukaryotic cells. In plants, a tip-focused Ca2+ -gradient is fundamental for rapid and unidirectional cell expansion during epidermal root hair development. Here we report that three members of the cyclic nucleotide-gated channel family are required to maintain cytosolic Ca2+ oscillations and the normal growth of root hairs. CNGC6, CNGC9 and CNGC14 were expressed in root hairs, with CNGC9 displaying the highest root hair specificity. In individual channel mutants, morphological defects including root hair swelling and branching, as well as bursting, were observed. The developmental phenotypes were amplified in the three cngc double mutant combinations. Finally, cngc6/9/14 triple mutants only developed bulging trichoblasts and could not form normal root hair protrusions because they burst after the transition to the rapid growth phase. Prior to developmental defects, single and double mutants showed increasingly disturbed patterns of Ca2+ oscillations. We conclude that CNGC6, CNGC9 and CNGC14 fulfill partially but not fully redundant functions in generating and maintaining tip-focused Ca2+ oscillations, which are fundamental for proper root hair growth and polarity. Furthermore, the results suggest that these calmodulin-binding and Ca2+ -permeable channels organize a robust tip-focused oscillatory calcium gradient, which is not essential for root hair initiation but is required to control the integrity of the root hair after the transition to the rapid growth phase. Our findings also show that root hairs possess a large ability to compensate calcium-signaling defects, and add new players to the regulatory network, which coordinates cell wall properties and cell expansion during polar root hair growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sinalização do Cálcio/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Parede Celular/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Citosol/metabolismo , Mutação , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Nicotiana
4.
New Phytol ; 221(4): 2080-2095, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30252144

RESUMO

Pattern recognition receptors (PRRs) sense microbial patterns and activate innate immunity against attempted microbial invasions. The leucine-rich repeat receptor kinases (LRR-RK) FLS2 and EFR, and the LRR receptor protein (LRR-RP) receptors RLP23 and RLP42, respectively, represent prototypical members of these two prominent and closely related PRR families. We conducted a survey of Arabidopsis thaliana immune signaling mediated by these receptors to address the question of commonalities and differences between LRR-RK and LRR-RP signaling. Quantitative differences in timing and amplitude were observed for several early immune responses, with RP-mediated responses typically being slower and more prolonged than those mediated by RKs. Activation of RLP23, but not FLS2, induced the production of camalexin. Transcriptomic analysis revealed that RLP23-regulated genes represent only a fraction of those genes differentially expressed upon FLS2 activation. Several positive and negative regulators of FLS2-signaling play similar roles in RLP23 signaling. Intriguingly, the cytoplasmic receptor kinase BIK1, a positive regulator of RK signaling, acts as a negative regulator of RP-type immune receptors in a manner dependent on BIK1 kinase activity. Our study unveiled unexpected differences in two closely related receptor systems and reports a new negative role of BIK1 in plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Flagelina/farmacologia , Genótipo , Peptídeos/farmacologia , Fosforilação , Reguladores de Crescimento de Plantas/biossíntese , Imunidade Vegetal/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia , Sesquiterpenos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Fitoalexinas
5.
Proc Natl Acad Sci U S A ; 114(8): E1544-E1553, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28096354

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are key players in cellular trafficking and coordinate vital cellular processes, such as cytokinesis, pathogen defense, and ion transport regulation. With few exceptions, SNAREs are tail-anchored (TA) proteins, bearing a C-terminal hydrophobic domain that is essential for their membrane integration. Recently, the Guided Entry of Tail-anchored proteins (GET) pathway was described in mammalian and yeast cells that serve as a blueprint of TA protein insertion [Schuldiner M, et al. (2008) Cell 134(4):634-645; Stefanovic S, Hegde RS (2007) Cell 128(6):1147-1159]. This pathway consists of six proteins, with the cytosolic ATPase GET3 chaperoning the newly synthesized TA protein posttranslationally from the ribosome to the endoplasmic reticulum (ER) membrane. Structural and biochemical insights confirmed the potential of pathway components to facilitate membrane insertion, but the physiological significance in multicellular organisms remains to be resolved. Our phylogenetic analysis of 37 GET3 orthologs from 18 different species revealed the presence of two different GET3 clades. We identified and analyzed GET pathway components in Arabidopsis thaliana and found reduced root hair elongation in Atget lines, possibly as a result of reduced SNARE biogenesis. Overexpression of AtGET3a in a receptor knockout (KO) results in severe growth defects, suggesting presence of alternative insertion pathways while highlighting an intricate involvement for the GET pathway in cellular homeostasis of plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Membrana Celular/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Proteínas SNARE/metabolismo , Transdução de Sinais/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Homeostase/fisiologia , Mamíferos/fisiologia , Fusão de Membrana/fisiologia , Chaperonas Moleculares/metabolismo , Filogenia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas SNARE/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA