Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 60(6): 587-596, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36379543

RESUMO

BACKGROUND: SHROOM4 is thought to play an important role in cytoskeletal modification and development of the early nervous system. Previously, single-nucleotide variants (SNVs) or copy number variations (CNVs) in SHROOM4 have been associated with the neurodevelopmental disorder Stocco dos Santos syndrome, but not with congenital anomalies of the urinary tract and the visceral or the cardiovascular system. METHODS: Here, exome sequencing and CNV analyses besides expression studies in zebrafish and mouse and knockdown (KD) experiments using a splice blocking morpholino in zebrafish were performed to study the role of SHROOM4 during embryonic development. RESULTS: In this study, we identified putative disease-causing SNVs and CNVs in SHROOM4 in six individuals from four families with congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems (CNS). Embryonic mouse and zebrafish expression studies showed Shroom4 expression in the upper and lower urinary tract, the developing cloaca, the heart and the cerebral CNS. KD studies in zebrafish larvae revealed pronephric cysts, anomalies of the cloaca and the heart, decreased eye-to-head ratio and higher mortality compared with controls. These phenotypes could be rescued by co-injection of human wild-type SHROOM4 mRNA and morpholino. CONCLUSION: The identified SNVs and CNVs in affected individuals with congenital anomalies of the urinary tract, the anorectal, the cardiovascular and the central nervous systems, and subsequent embryonic mouse and zebrafish studies suggest SHROOM4 as a developmental gene for different organ systems.


Assuntos
Sistema Cardiovascular , Sistema Urinário , Gravidez , Feminino , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Variações do Número de Cópias de DNA , Morfolinos , Sistema Urinário/anormalidades , Sistema Nervoso Central
2.
Front Cell Dev Biol ; 8: 567, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850778

RESUMO

Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exstrophy. Furthermore, we performed immunohistochemistry of an unaffected 6-week-old human embryo and detected SLC20A1 in the urinary tract and the abdominal midline, structures implicated in the pathogenesis of cloacal exstrophy. Additionally, we resequenced SLC20A1 in 690 individuals with bladder exstrophy-epispadias complex (BEEC) including 84 individuals with cloacal exstrophy. We identified two additional monoallelic de novo variants. One was identified in a case-parent trio with classic bladder exstrophy, and one additional novel de novo variant was detected in an affected mother who transmitted this variant to her affected son. To study the potential cellular impact of SLC20A1 variants, we expressed them in HEK293 cells. Here, phosphate transport was not compromised, suggesting that it is not a disease mechanism. However, there was a tendency for lower levels of cleaved caspase-3, perhaps implicating apoptosis pathways in the disease. Our results suggest SLC20A1 is involved in urinary tract and urorectal development and implicate SLC20A1 as a disease-gene for BEEC.

3.
Sci Signal ; 12(581)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088978

RESUMO

Macrophages play key roles in the immune systems of humans and other mammals. Here, we performed single-cell analyses of the mRNAs and proteins of human macrophages to compare their responses to the signaling molecules lipopolysaccharide (LPS), a component of Gram-negative bacteria, and palmitate (PAL), a free fatty acid. We found that, although both molecules signal through the cell surface protein Toll-like receptor 4 (TLR4), they stimulated the expression of different genes, resulting in specific pro- and anti-inflammatory cellular states for each signal. The effects of the glucocorticoid receptor, which antagonizes LPS signaling, and cyclic AMP-dependent transcription factor 3, which inhibits PAL-induced inflammation, on inflammatory response seemed largely determined by digital on-off events. Furthermore, the quantification of transcriptional variance and signaling entropy enabled the identification of cell state-specific deregulated molecular pathways. These data suggest that the preservation of signaling in distinct cells might confer diversity on macrophage populations essential to maintaining major cellular functions.


Assuntos
Variação Genética/genética , Homeostase/genética , Macrófagos/metabolismo , Transdução de Sinais/genética , Transcrição Gênica/genética , Fator 3 Ativador da Transcrição/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-8/genética , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Palmitatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única/métodos , Células THP-1 , Receptor 4 Toll-Like/genética , Transcrição Gênica/efeitos dos fármacos
4.
Circulation ; 139(24): 2778-2792, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30922078

RESUMO

BACKGROUND: Enhancers are genomic regulatory elements conferring spatiotemporal and signal-dependent control of gene expression. Recent evidence suggests that enhancers can generate noncoding enhancer RNAs, but their (patho)biological functions remain largely elusive. METHODS: We performed chromatin immunoprecipitation-coupled sequencing of histone marks combined with RNA sequencing of left ventricular biopsies from experimental and genetic mouse models of human cardiac hypertrophy to identify transcripts revealing enhancer localization, conservation with the human genome, and hypoxia-inducible factor 1α dependence. The most promising candidate, hypoxia-inducible enhancer RNA ( HERNA)1, was further examined by investigating its capacity to modulate neighboring coding gene expression by binding to their gene promoters by using chromatin isolation by RNA purification and λN-BoxB tethering-based reporter assays. The role of HERNA1 and its neighboring genes for pathological stress-induced growth and contractile dysfunction, and the therapeutic potential of HERNA1 inhibition was studied in gapmer-mediated loss-of-function studies in vitro using human induced pluripotent stem cell-derived cardiomyocytes and various in vivo models of human pathological cardiac hypertrophy. RESULTS: HERNA1 is robustly induced on pathological stress. Production of HERNA1 is initiated by direct hypoxia-inducible factor 1α binding to a hypoxia-response element in the histoneH3-lysine27acetylation marks-enriched promoter of the enhancer and confers hypoxia responsiveness to nearby genes including synaptotagmin XVII, a member of the family of membrane-trafficking and Ca2+-sensing proteins and SMG1, encoding a phosphatidylinositol 3-kinase-related kinase. Consequently, a substrate of SMG1, ATP-dependent RNA helicase upframeshift 1, is hyperphoshorylated in a HERNA1- and SMG1-dependent manner. In vitro and in vivo inactivation of SMG1 and SYT17 revealed overlapping and distinct roles in modulating cardiac hypertrophy. Finally, in vivo administration of antisense oligonucleotides targeting HERNA1 protected mice from stress-induced pathological hypertrophy. The inhibition of HERNA1 postdisease development reversed left ventricular growth and dysfunction, resulting in increased overall survival. CONCLUSIONS: HERNA1 is a novel heart-specific noncoding RNA with key regulatory functions in modulating the growth, metabolic, and contractile gene program in disease, and reveals a molecular target amenable to therapeutic exploitation.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/prevenção & controle , Cardiomiopatia Hipertrófica/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , RNA não Traduzido/metabolismo , Animais , Sítios de Ligação , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
5.
Nat Commun ; 9(1): 237, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339785

RESUMO

Impaired or excessive growth of endothelial cells contributes to several diseases. However, the functional involvement of regulatory long non-coding RNAs in these processes is not well defined. Here, we show that the long non-coding antisense transcript of GATA6 (GATA6-AS) interacts with the epigenetic regulator LOXL2 to regulate endothelial gene expression via changes in histone methylation. Using RNA deep sequencing, we find that GATA6-AS is upregulated in endothelial cells during hypoxia. Silencing of GATA6-AS diminishes TGF-ß2-induced endothelial-mesenchymal transition in vitro and promotes formation of blood vessels in mice. We identify LOXL2, known to remove activating H3K4me3 chromatin marks, as a GATA6-AS-associated protein, and reveal a set of angiogenesis-related genes that are inversely regulated by LOXL2 and GATA6-AS silencing. As GATA6-AS silencing reduces H3K4me3 methylation of two of these genes, periostin and cyclooxygenase-2, we conclude that GATA6-AS acts as negative regulator of nuclear LOXL2 function.


Assuntos
Aminoácido Oxirredutases/metabolismo , Células Endoteliais/metabolismo , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica/genética , Hipóxia/genética , Neovascularização Fisiológica/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , Animais , Moléculas de Adesão Celular/genética , Ciclo-Oxigenase 2/genética , Epigênese Genética , Transição Epitelial-Mesenquimal , Inativação Gênica , Código das Histonas/genética , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Metilação , Camundongos
6.
EMBO Rep ; 19(1): 118-134, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141987

RESUMO

T-box transcription factors play essential roles in multiple aspects of vertebrate development. Here, we show that cooperative function of BRACHYURY (T) with histone-modifying enzymes is essential for mouse embryogenesis. A single point mutation (TY88A) results in decreased histone 3 lysine 27 acetylation (H3K27ac) at T target sites, including the T locus, suggesting that T autoregulates the maintenance of its expression and functions by recruiting permissive chromatin modifications to putative enhancers during mesoderm specification. Our data indicate that T mediates H3K27ac recruitment through a physical interaction with p300. In addition, we determine that T plays a prominent role in the specification of hematopoietic and endothelial cell types. Hematopoietic and endothelial gene expression programs are disrupted in TY88A mutant embryos, leading to a defect in the differentiation of hematopoietic progenitors. We show that this role of T is mediated, at least in part, through activation of a distal Lmo2 enhancer.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas Fetais/genética , Histonas/metabolismo , Mesoderma/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas com Domínio T/genética , Fatores de Transcrição de p300-CBP/genética , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Linhagem da Célula/genética , Cromatina/química , Cromatina/metabolismo , Embrião de Mamíferos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Histonas/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Mutação Puntual , Ligação Proteica , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
7.
Cell Mol Life Sci ; 73(13): 2491-509, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27007508

RESUMO

Since decades it has been known that non-protein-coding RNAs have important cellular functions. Deep sequencing recently facilitated the discovery of thousands of novel transcripts, now classified as long noncoding RNAs (lncRNAs), in many vertebrate and invertebrate species. LncRNAs are involved in a wide range of cellular mechanisms, from almost all aspects of gene expression to protein translation and stability. Recent findings implicate lncRNAs as key players of cellular differentiation, cell lineage choice, organogenesis and tissue homeostasis. Moreover, lncRNAs are involved in pathological conditions such as cancer and cardiovascular disease, and therefore provide novel biomarkers and pharmaceutical targets. Here we discuss examples illustrating the versatility of lncRNAs in gene control, development and differentiation, as well as in human disease.


Assuntos
Doenças Cardiovasculares/genética , Regulação da Expressão Gênica , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Montagem e Desmontagem da Cromatina , Metilação de DNA , Epigênese Genética , Código das Histonas , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , RNA Longo não Codificante/análise , RNA Longo não Codificante/metabolismo
8.
Pflugers Arch ; 468(6): 945-58, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26944276

RESUMO

While the vast majority of the genome is transcribed into RNA, only a small fraction of these transcripts have protein-coding potential. A large fraction of the transcribed RNA belongs to the class known as long non-coding RNAs (lncRNAs). Several recent studies have shown that at least some of these lncRNA transcripts represent functional RNA molecules. LncRNAs can utilize a wide range of mechanisms to regulate the RNA and/or the protein content of a cell on the transcriptional and the post-transcriptional levels. So far, many studies have identified differentially expressed lncRNAs in various physiological contexts, genetic disorders and human diseases. A steadily increasing number of studies could establish functional roles for some of these lncRNAs in developmental processes, cancer and tissue homeostasis. Taken together, these functions provide an additional layer of gene regulation and contribute to the high complexity of physiological and disease-related phenotypes.


Assuntos
Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Impressão Genômica , Humanos , Agregação Patológica de Proteínas/genética , RNA Longo não Codificante/metabolismo
9.
RNA Biol ; 10(10): 1579-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24036695

RESUMO

Epigenetic control mechanisms determine active and silenced regions of the genome. It is known that the Polycomb Repressive Complex 2 (PRC2) and the Trithorax group/Mixed lineage leukemia (TrxG/Mll) complex are able to set repressive and active histone marks, respectively. Long non-coding RNAs (lncRNAs) can interact with either of these complexes and guide them to regulatory elements, thereby modifying the expression levels of target genes. The lncRNA Fendrr is transiently expressed in lateral mesoderm of mid-gestational mouse embryos and was shown to interact with both PRC2 and TrxG/Mll complexes in vivo. Gene targeting revealed that loss of Fendrr results in impaired differentiation of tissues derived from lateral mesoderm, the heart and the body wall, ultimately leading to embryonic death. Molecular data suggests that Fendrr acts via dsDNA/RNA triplex formation at target regulatory elements, and directly increases PRC2 occupancy at these sites. This, in turn, modifies the ratio of repressive to active marks, adjusting the expression levels of Fendrr target genes in lateral mesoderm. We propose that Fendrr also mediates long-term epigenetic marks to define expression levels of its target genes within the descendants of lateral mesoderm cells. Here we discuss approaches for lncRNA gene knockouts in the mouse, and suggest a model how Fendrr and possibly other lncRNAs act during embryogenesis.


Assuntos
Desenvolvimento Embrionário , Redes Reguladoras de Genes , RNA Longo não Codificante/metabolismo , Animais , Embrião de Mamíferos/metabolismo , Camundongos , Especificidade de Órgãos , Transcriptoma
10.
PLoS Genet ; 9(2): e1003250, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23408899

RESUMO

Aberrant CpG methylation is a universal epigenetic trait of cancer cell genomes. However, human cancer samples or cell lines preclude the investigation of epigenetic changes occurring early during tumour development. Here, we have used MeDIP-seq to analyse the DNA methylome of APC(Min) adenoma as a model for intestinal cancer initiation, and we present a list of more than 13,000 recurring differentially methylated regions (DMRs) characterizing intestinal adenoma of the mouse. We show that Polycomb Repressive Complex (PRC) targets are strongly enriched among hypermethylated DMRs, and several PRC2 components and DNA methyltransferases were up-regulated in adenoma. We further demonstrate by bisulfite pyrosequencing of purified cell populations that the DMR signature arises de novo in adenoma cells rather than by expansion of a pre-existing pattern in intestinal stem cells or undifferentiated crypt cells. We found that epigenetic silencing of tumour suppressors, which occurs frequently in colon cancer, was rare in adenoma. Quite strikingly, we identified a core set of DMRs, which is conserved between mouse adenoma and human colon cancer, thus possibly revealing a global panel of epigenetically modified genes for intestinal tumours. Our data allow a distinction between early conserved epigenetic alterations occurring in intestinal adenoma and late stochastic events promoting colon cancer progression, and may facilitate the selection of more specific clinical epigenetic biomarkers.


Assuntos
Adenoma/genética , Neoplasias do Colo/genética , Metilação de DNA/genética , Neoplasias Intestinais/genética , Proteínas do Grupo Polycomb/genética , Adenoma/patologia , Animais , Sequência de Bases , Ilhas de CpG/genética , Epigenômica , Genoma , Humanos , Neoplasias Intestinais/patologia , Camundongos , Sintenia
11.
Dev Cell ; 24(2): 206-14, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23369715

RESUMO

The histone-modifying complexes PRC2 and TrxG/MLL play pivotal roles in determining the activation state of genes controlling pluripotency, lineage commitment, and cell differentiation. Long noncoding RNAs (lncRNAs) can bind to either complex, and some have been shown to act as modulators of PRC2 or TrxG/MLL activity. Here we show that the lateral mesoderm-specific lncRNA Fendrr is essential for proper heart and body wall development in the mouse. Embryos lacking Fendrr displayed upregulation of several transcription factors controlling lateral plate or cardiac mesoderm differentiation, accompanied by a drastic reduction in PRC2 occupancy along with decreased H3K27 trimethylation and/or an increase in H3K4 trimethylation at their promoters. Fendrr binds to both the PRC2 and TrxG/MLL complexes, suggesting that it acts as modulator of chromatin signatures that define gene activity. Thus, we identified an lncRNA that plays an essential role in the regulatory networks controlling the fate of lateral mesoderm derivatives.


Assuntos
Desenvolvimento Embrionário , Coração/embriologia , Proteína de Leucina Linfoide-Mieloide/metabolismo , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Diferenciação Celular/genética , Metilação de DNA , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
12.
Dev Cell ; 11(4): 561-73, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17011494

RESUMO

The Gli-like transcription factor TRA-1 of C. elegans promotes female development by repressing the transcription of male-specific genes. We have found that tra-1 interacts with tra-4, a previously uncharacterized gene that encodes a protein similar to the human proto-oncoprotein and transcriptional repressor PLZF. In this context, the TRA-4 protein functions with NASP-1, a C. elegans homolog of the mammalian histone chaperone NASP, and the histone deacetylase HDA-1. We also found that tra-4 is a member of the synMuv B group of genes, many of which encode homologs of components of the Drosophila Myb-Muv B transcriptional repressor complex, and that several synMuv B genes also promote female development. Based on these results, we propose that male-specific genes are repressed in C. elegans hermaphrodites by the combined action of TRA-1/Gli, a complex composed of TRA-4/PLZF-like, NASP, and HDA-1/HDAC, and synMuv B proteins. Similar interactions may function in sex determination and developmental regulation in other species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Helminto/metabolismo , Caracteres Sexuais , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Embrião não Mamífero , Feminino , Proteínas de Helminto/química , Proteínas de Helminto/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Transgenes
13.
Nature ; 433(7027): 754-60, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-15716954

RESUMO

Genetic analyses in Caenorhabditis elegans have been instrumental in the elucidation of the central cell-death machinery, which is conserved from C. elegans to mammals. One possible difference that has emerged is the role of mitochondria. By releasing cytochrome c, mitochondria are involved in the activation of caspases in mammals. However, there has previously been no evidence that mitochondria are involved in caspase activation in C. elegans. Here we show that mitochondria fragment in cells that normally undergo programmed cell death during C. elegans development. Mitochondrial fragmentation is induced by the BH3-only protein EGL-1 and can be blocked by mutations in the bcl-2-like gene ced-9, indicating that members of the Bcl-2 family might function in the regulation of mitochondrial fragmentation in apoptotic cells. Mitochondrial fragmentation is independent of CED-4/Apaf-1 and CED-3/caspase, indicating that it occurs before or simultaneously with their activation. Furthermore, DRP-1/dynamin-related protein, a key component of the mitochondrial fission machinery, is required and sufficient to induce mitochondrial fragmentation and programmed cell death during C. elegans development. These results assign an important role to mitochondria in the cell-death pathway in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Reguladoras de Apoptose , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Caspases/genética , Caspases/metabolismo , Morte Celular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas Quinases Associadas com Morte Celular , Expressão Gênica , Modelos Biológicos , Mutação/genética , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA