Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(5): 1682-1690, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38417111

RESUMO

Epitranscriptomic mRNA modifications affect gene expression, with their altered balance detected in various cancers. YTHDF proteins contain the YTH reader domain recognizing the m6A mark on mRNA and represent valuable drug targets. Crystallographic structures have been determined for all three family members; however, discrepancies are present in the organization of the m6A-binding pocket. Here, we present new crystallographic structures of the YTH domain of YTHDF1, accompanied by computational studies, showing that this domain can exist in different stable conformations separated by a significant energetic barrier. During the transition, additional conformations are explored, with peculiar druggable pockets appearing and offering new opportunities for the design of YTH-interfering small molecules.


Assuntos
Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Maleabilidade , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Conformação Molecular
2.
J Biol Chem ; 298(12): 102663, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372231

RESUMO

Theoretical work suggests that collective spatiotemporal behavior of integral membrane proteins should be modulated by boundary lipids sheathing their membrane anchors. Here, we show evidence for this prediction while investigating the mechanism for maintaining a steady amount of the active form of integral membrane protein Lck kinase (LckA) by Lck trans-autophosphorylation regulated by the phosphatase CD45. We used super-resolution microscopy, flow cytometry, and pharmacological and genetic perturbation to gain insight into the spatiotemporal context of this process. We found that LckA is generated exclusively at the plasma membrane, where CD45 maintains it in a ceaseless dynamic equilibrium with its unphosphorylated precursor. Steady LckA shows linear dependence, after an initial threshold, over a considerable range of Lck expression levels. This behavior fits a phenomenological model of trans-autophosphorylation that becomes more efficient with increasing LckA. We then challenged steady LckA formation by genetically swapping the Lck membrane anchor with structurally divergent ones, such as that of Src or the transmembrane domains of LAT, CD4, palmitoylation-defective CD4 and CD45 that were expected to drastically modify Lck boundary lipids. We observed small but significant changes in LckA generation, except for the CD45 transmembrane domain that drastically reduced LckA due to its excessive lateral proximity to CD45. Comprehensively, LckA formation and maintenance can be best explained by lipid bilayer critical density fluctuations rather than liquid-ordered phase-separated nanodomains, as previously thought, with "like/unlike" boundary lipids driving dynamical proximity and remoteness of Lck with itself and with CD45.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Processamento de Proteína Pós-Traducional , Antígenos Comuns de Leucócito/metabolismo , Bicamadas Lipídicas/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Domínios Proteicos
3.
Biomolecules ; 11(4)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921540

RESUMO

The conformational state of the activation loop (A-loop) is pivotal for the activity of most protein kinases. Hence, the characterization of the conformational dynamics of the A-loop is important to increase our understanding of the molecular processes related to diseases and to support the discovery of small molecule kinase inhibitors. Here, we carry out a combination of molecular dynamics (MD) and essential dynamics (ED) analyses to fully map the effects of phosphorylation, ADP, and conformation disrupting (CD) inhibitors (i.e., CD532 and MLN8054) on the dynamics of the A-loop of Aurora-A. MD revealed that the stability of the A-loop in an open conformation is enhanced by single phospho-Thr-288, while paradoxically, the presence of a second phosphorylation at Thr-287 decreases such stability and renders the A-loop more fluctuant in time and space. Moreover, we found that this post-translational modification has a significant effect on the direction of the A-loop motions. ED analysis suggests that the presence of the phosphate moiety induces the dynamics of Aurora-A to sample two distinct energy minima, instead of a single large minimum, as in unphosphorylated Aurora-A states. This observation indicates that the conformational distributions of Aurora-A with both single and double phospho-threonine modifications are remarkably different from the unphosphorylated state. In the closed states, binding of CD532 and MLN8054 inhibitors has the effect of increasing the distance of the N- and C-lobes of the kinase domain of Aurora-A, and the angle analysis between those two lobes during MD simulations showed that the N- and C-lobes are kept more open in presence of CD532, compared to MLN8054. As the A-loop is a common feature of Aurora protein kinases, our studies provide a general description of the conformational dynamics of this structure upon phosphorylation and different ligands binding.


Assuntos
Difosfato de Adenosina/metabolismo , Aurora Quinase A/química , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/farmacologia , Difosfato de Adenosina/química , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/metabolismo , Benzazepinas/química , Benzazepinas/farmacologia , Domínio Catalítico , Humanos , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Pirimidinas/farmacologia
4.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731361

RESUMO

Given the enormous social and health impact of the pandemic triggered by severe acute respiratory syndrome 2 (SARS-CoV-2), the scientific community made a huge effort to provide an immediate response to the challenges posed by Coronavirus disease 2019 (COVID-19). One of the most important proteins of the virus is an enzyme, called 3CLpro or main protease, already identified as an important pharmacological target also in SARS and Middle East respiratory syndrome virus (MERS) viruses. This protein triggers the production of a whole series of enzymes necessary for the virus to carry out its replicating and infectious activities. Therefore, it is crucial to gain a deeper understanding of 3CLpro structure and function in order to effectively target this enzyme. All-atoms molecular dynamics (MD) simulations were performed to examine the different conformational behaviors of the monomeric and dimeric form of SARS-CoV-2 3CLpro apo structure, as revealed by microsecond time scale MD simulations. Our results also shed light on the conformational dynamics of the loop regions at the entry of the catalytic site. Studying, at atomic level, the characteristics of the active site and obtaining information on how the protein can interact with its substrates will allow the design of molecules able to block the enzymatic function crucial for the virus.


Assuntos
Betacoronavirus/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/química , Domínio Catalítico , Proteases 3C de Coronavírus , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica , SARS-CoV-2
5.
Biochemistry ; 57(44): 6336-6348, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30346159

RESUMO

Histidine decarboxylase is a pyridoxal 5'-phosphate enzyme catalyzing the conversion of histidine to histamine, a bioactive molecule exerting its role in many modulatory processes. The human enzyme is involved in many physiological functions, such as neurotransmission, gastrointestinal track function, cell growth, and differentiation. Here, we studied the functional properties of the human enzyme and, in particular, the effects exerted at the protein level by two cysteine residues: Cys-180 and Cys-418. Surprisingly, the enzyme exists in an equilibrium between a reduced and an oxidized form whose extent depends on the redox state of Cys-180. Moreover, we determined that (i) the two enzymatic redox species exhibit modest structural changes in the coenzyme microenvironment and (ii) the oxidized form is slightly more active and stable than the reduced one. These data are consistent with the model proposed by bioinformatics analyses and molecular dynamics simulations in which the Cys-180 redox state could be responsible for a structural transition affecting the C-terminal domain reorientation leading to active site alterations. Furthermore, the biochemical properties of the purified C180S and C418S variants reveal that C180S behaves like the reduced form of the wild-type enzyme, while C418S is sensitive to reductants like the wild-type enzyme, thus allowing the identification of Cys-180 as the redox sensitive switch. On the other hand, Cys-418 appears to be a residue involved in aggregation propensity. A possible role for Cys-180 as a regulatory switch in response to different cellular redox conditions could be suggested.


Assuntos
Cisteína/química , Histidina Descarboxilase/química , Histidina Descarboxilase/metabolismo , Mutação , Fosfato de Piridoxal/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Histidina Descarboxilase/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Homologia de Sequência
6.
Sci Rep ; 6: 34325, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677466

RESUMO

Dysfunction of the inwardly-rectifying potassium channels Kir4.1 (KCNJ10) represents a pathogenic mechanism contributing to Autism-Epilepsy comorbidity. To define the role of Kir4.1 variants in the disorder, we sequenced KCNJ10 in a sample of affected individuals, and performed genotype-phenotype correlations. The effects of mutations on channel activity, protein trafficking, and astrocyte function were investigated in Xenopus laevis oocytes, and in human astrocytoma cell lines. An in vivo model of the disorder was also explored through generation of kcnj10a morphant zebrafish overexpressing the mutated human KCNJ10. We detected germline heterozygous KCNJ10 variants in 19/175 affected children. Epileptic spasms with dysregulated sensory processing represented the main disease phenotype. When investigated on astrocyte-like cells, the p.R18Q mutation exerted a gain-of-function effect by enhancing Kir4.1 membrane expression and current density. Similarly, the p.R348H variant led to gain of channel function through hindrance of pH-dependent current inhibition. The frequent polymorphism p.R271C seemed, instead, to have no obvious functional effects. Our results confirm that variants in KCNJ10 deserve attention in autism-epilepsy, and provide insight into the molecular mechanisms of autism and seizures. Similar to neurons, astrocyte dysfunction may result in abnormal synaptic transmission and electrical discharge, and should be regarded as a possible pharmacological target in autism-epilepsy.

7.
Hum Mol Genet ; 23(18): 4875-86, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24794859

RESUMO

Short QT3 syndrome (SQT3S) is a cardiac disorder characterized by a high risk of mortality and associated with mutations in Kir2.1 (KCNJ2) channels. The molecular mechanisms leading to channel dysfunction, cardiac rhythm disturbances and neurodevelopmental disorders, potentially associated with SQT3S, remain incompletely understood. Here, we report on monozygotic twins displaying a short QT interval on electrocardiogram recordings and autism-epilepsy phenotype. Genetic screening identified a novel KCNJ2 variant in Kir2.1 that (i) enhanced the channel's surface expression and stability at the plasma membrane, (ii) reduced protein ubiquitylation and degradation, (iii) altered protein compartmentalization in lipid rafts by targeting more channels to cholesterol-poor domains and (iv) reduced interactions with caveolin 2. Importantly, our study reveals novel physiological mechanisms concerning wild-type Kir2.1 channel processing by the cell, such as binding to both caveolin 1 and 2, protein degradation through the ubiquitin-proteasome pathway; in addition, it uncovers a potential multifunctional site that controls Kir2.1 surface expression, protein half-life and partitioning to lipid rafts. The reported mechanisms emerge as crucial also for proper astrocyte function, suggesting the need for a neuropsychiatric evaluation in patients with SQT3S and offering new opportunities for disease management.


Assuntos
Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Transtorno Autístico/genética , Epilepsia/genética , Sistema de Condução Cardíaco/anormalidades , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Animais , Astrocitoma/metabolismo , Transtorno Autístico/patologia , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Linhagem Celular , Criança , Epilepsia/patologia , Estudos de Associação Genética , Células HEK293 , Sistema de Condução Cardíaco/patologia , Humanos , Masculino , Mutação , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Gêmeos Monozigóticos , Xenopus laevis/embriologia
8.
Biophys Chem ; 171: 76-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23219002

RESUMO

ATP-sensitive K(+) (K(ATP)) channels, comprised of pore-forming Kir6.x and regulatory SURx subunits, play important roles in many cellular functions; because of their sensitivity to inhibition by intracellular ATP, K(ATP) channels provide a link between cell metabolism and membrane electrical activity. We constructed structural homology models of Kir6.2 and a series of Kir6.2 channels carrying mutations within the putative ATP-binding site. Computational docking was carried out to determine the conformation of ATP in its binding site. The Linear Interaction Energy (LIE) method was used to estimate the free-energy of ATP binding to wild-type and mutant Kir6.2 channels. Comparisons of the theoretical binding free energies for ATP with those determined from mutational experiments enabled the identification of the most probable conformation of ATP bound to the Kir6.2 channel. A set of LIE parameters was defined that may enable prediction of the effects of additional Kir6.2 mutations within the ATP binding site on the affinity for ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos , Alinhamento de Sequência , Homologia Estrutural de Proteína , Termodinâmica
9.
Eur Biophys J ; 41(3): 353-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22290616

RESUMO

The 37/67-kDa human laminin receptor(LamR) is a cell surface protein that interacts with molecules located in the extra-cellular matrix. In particular, interactions between LamR and laminins play a major role in mediating changes in the cellular environment that affect cell adhesion, neurite outgrowth, tumor growth and metastasis. The exact interaction mode of laminin-1 and LamR is not fully understood. Laminin-1 is thought to bind to LamR through interaction with the so-called peptide G (residues 161­180) and the C-terminal helix (residues 205­229). Here we performed 100-ns atomistic force field based molecular dynamics simulations to explore the structure and dynamics of LamR related to laminin-1 interactions. Our main finding is that loop 188­197 in the C-terminal region is highly flexible. It undergoes a major change resulting in a conformational switch that partially solvent exposes the R180 residue in the final part of the G peptide. So, R180 could contribute to laminin-1 binding. Projection of the simulations along the first two principal components also confirms the importance of this conformational switch in the LamR. This may be a basic prerequisite to clarify the key structural determinants of the interaction of LamR with laminin-1.


Assuntos
Laminina/metabolismo , Simulação de Dinâmica Molecular , Receptores de Laminina/química , Receptores de Laminina/metabolismo , Sequência de Aminoácidos , Humanos , Laminina/química , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica
10.
Biochemistry ; 45(39): 11844-55, 2006 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17002285

RESUMO

VSTx1 is a tarantula venom toxin which binds to the archaebacterial voltage-gated potassium channel KvAP. VSTx1 is thought to access the voltage sensor domain of the channel via the lipid bilayer phase. In order to understand its mode of action and implications for the mechanism of channel activation, it is important to characterize the interactions of VSTx1 with lipid bilayers. Molecular dynamics (MD) simulations (for a total simulation time in excess of 0.2 micros) have been used to explore VSTx1 localization and interactions with zwitterionic (POPC) and with anionic (POPE/POPG) lipid bilayers. In particular, three series of MD simulations have been used to explore the net drift of VSTx1 relative to the center of a bilayer, starting from different locations of the toxin. The preferred location of the toxin is at the membrane/water interface. Although there are differences between POPC and POPE/POPG bilayers, in both cases the toxin forms favorable interactions at the interface, maximizing H-bonding to lipid headgroups and to water molecules while retaining interactions with the hydrophobic core of the bilayer. A 30 ns unrestrained simulation reveals dynamic partitioning of VSTx1 into the interface of a POPC bilayer. The preferential location of VSTx1 at the interface is discussed in the context of Kv channel gating models and provides support for a mode of action in which the toxin interacts with the Kv voltage sensor "paddle" formed by the S3 and S4 helices.


Assuntos
Proteínas Arqueais/química , Bicamadas Lipídicas/química , Modelos Moleculares , Peptídeos/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Venenos de Aranha/química , Proteínas Arqueais/metabolismo , Simulação por Computador , Bicamadas Lipídicas/metabolismo , Peptídeos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Venenos de Aranha/metabolismo , Propriedades de Superfície
11.
Biophys J ; 88(5): 3310-20, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15749783

RESUMO

Inward rectifier (Kir) potassium channels are characterized by two transmembrane helices per subunit, plus an intracellular C-terminal domain that controls channel gating in response to changes in concentration of various ligands. Based on the crystal structure of the tetrameric C-terminal domain of Kir3.1, it is possible to build a homology model of the ATP-binding C-terminal domain of Kir6.2. Molecular dynamics simulations have been used to probe the dynamics of Kir C-terminal domains and to explore the relationship between their dynamics and possible mechanisms of channel gating. Multiple simulations, each of 10 ns duration, have been performed for Kir3.1 (crystal structure) and Kir6.2 (homology model), in both their monomeric and tetrameric forms. The Kir6.2 simulations were performed with and without bound ATP. The results of the simulations reveal comparable conformational stability for the crystal structure and the homology model. There is some decrease in conformational flexibility when comparing the monomers with the tetramers, corresponding mainly to the subunit interfaces in the tetramer. The beta-phosphate of ATP interacts with the side chain of K185 in the Kir6.2 model and simulations. The flexibility of the Kir6.2 tetramer is not changed greatly by the presence of bound ATP, other than in two loop regions. Principal components analysis of the simulated dynamics suggests loss of symmetry in both the Kir3.1 and Kir6.2 tetramers, consistent with "dimer-of-dimers" motion of subunits in C-terminal domains of the corresponding Kir channels. This is suggestive of a gating model in which a transition between exact tetrameric symmetry and dimer-of-dimers symmetry is associated with a change in transmembrane helix packing coupled to gating of the channel. Dimer-of-dimers motion of the C-terminal domain tetramer is also supported by coarse-grained (anisotropic network model) calculations. It is of interest that loss of exact rotational symmetry has also been suggested to play a role in gating in the bacterial Kir homolog, KirBac1.1, and in the nicotinic acetylcholine receptor channel.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Anisotropia , Biofísica/métodos , Membrana Celular/metabolismo , Simulação por Computador , Cristalografia por Raios X , Dimerização , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Ligantes , Substâncias Macromoleculares/química , Camundongos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Fosfatos/química , Canais de Potássio/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Receptores Nicotínicos/química , Homologia de Sequência de Aminoácidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA