Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 218(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34665220

RESUMO

T follicular helper cell (TFH)-dependent antibody responses are critical for long-term immunity. Antibody responses are diminished in early life, limiting long-term protective immunity and allowing prolonged or recurrent infection, which may be important for viral lung infections that are highly prevalent in infancy. In a murine model using respiratory syncytial virus (RSV), we show that TFH and the high-affinity antibody production they promote are vital for preventing disease on RSV reinfection. Following a secondary RSV infection, TFH-deficient mice had significantly exacerbated disease characterized by delayed viral clearance, increased weight loss, and immunopathology. TFH generation in early life was compromised by heightened IL-2 and STAT5 signaling in differentiating naive T cells. Neutralization of IL-2 during early-life RSV infection resulted in a TFH-dependent increase in antibody-mediated immunity and was sufficient to limit disease severity upon reinfection. These data demonstrate the importance of TFH in protection against recurrent RSV infection and highlight a mechanism by which this is suppressed in early life.


Assuntos
Interleucina-2/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/virologia , Fatores Etários , Animais , Anticorpos Antivirais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/virologia , Feminino , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/virologia , Imunidade Humoral , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-2/fisiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Gravidez , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Reinfecção/imunologia , Reinfecção/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Fator de Transcrição STAT5/metabolismo
2.
mBio ; 11(1)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071269

RESUMO

Respiratory viral infections are extremely common, but their impacts on the composition and function of the gut microbiota are poorly understood. We previously observed a significant change in the gut microbiota after viral lung infection. Here, we show that weight loss during respiratory syncytial virus (RSV) or influenza virus infection was due to decreased food consumption, and that the fasting of mice altered gut microbiota composition independently of infection. While the acute phase tumor necrosis factor alpha (TNF-α) response drove early weight loss and inappetence during RSV infection, this was not sufficient to induce changes in the gut microbiota. However, the depletion of CD8+ cells increased food intake and prevented weight loss, resulting in a reversal of the gut microbiota changes normally observed during RSV infection. Viral infection also led to changes in the fecal gut metabolome, with a significant shift in lipid metabolism. Sphingolipids, polyunsaturated fatty acids (PUFAs), and the short-chain fatty acid (SCFA) valerate were all increased in abundance in the fecal metabolome following RSV infection. Whether this and the impact of infection-induced anorexia on the gut microbiota are part of a protective anti-inflammatory response during respiratory viral infections remains to be determined.IMPORTANCE The gut microbiota has an important role in health and disease: gut bacteria can generate metabolites that alter the function of immune cells systemically. Understanding the factors that can lead to changes in the gut microbiome may help to inform therapeutic interventions. This is the first study to systematically dissect the pathway of events from viral lung infection to changes in gut microbiota. We show that the cellular immune response to viral lung infection induces inappetence, which in turn alters the gut microbiome and metabolome. Strikingly, there was an increase in lipids that have been associated with the resolution of disease. This opens up new paths of investigation: first, what is the (presumably secreted) factor made by the T cells that can induce inappetence? Second, is inappetence an adaptation that accelerates recovery from infection, and if so, does the microbiome play a role in this?


Assuntos
Microbioma Gastrointestinal/fisiologia , Metaboloma , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Viroses/imunologia , Viroses/virologia , Animais , Anorexia , Apetite , Bactérias , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Ingestão de Alimentos , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Metabolismo dos Lipídeos , Lipídeos , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano , Infecções Respiratórias/complicações , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Viroses/complicações , Redução de Peso
3.
Front Immunol ; 9: 182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483910

RESUMO

Alterations in the composition of the gut microbiota have profound effects on human health. Consequently, there is great interest in identifying, characterizing, and understanding factors that initiate these changes. Despite their high prevalence, studies have only recently begun to investigate how viral lung infections have an impact on the gut microbiota. There is also considerable interest in whether the gut microbiota could be manipulated during vaccination to improve efficacy. In this highly controlled study, we aimed to establish the effect of viral lung infection on gut microbiota composition and the gut environment using mouse models of common respiratory pathogens respiratory syncytial virus (RSV) and influenza virus. This was then compared to the effect of live attenuated influenza virus (LAIV) vaccination. Both RSV and influenza virus infection resulted in significantly altered gut microbiota diversity, with an increase in Bacteroidetes and a concomitant decrease in Firmicutes phyla abundance. Although the increase in the Bacteroidetes phylum was consistent across several experiments, differences were observed at the family and operational taxonomic unit level. This suggests a change in gut conditions after viral lung infection that favors Bacteroidetes outgrowth but not individual families. No change in gut microbiota composition was observed after LAIV vaccination, suggesting that the driver of gut microbiota change is specific to live viral infection. Viral lung infections also resulted in an increase in fecal lipocalin-2, suggesting low-grade gut inflammation, and colonic Muc5ac levels. Owing to the important role that mucus plays in the gut environment, this may explain the changes in microbiota composition observed. This study demonstrates that the gut microbiota and the gut environment are altered following viral lung infections and that these changes are not observed during vaccination. Whether increased mucin levels and gut inflammation drive, or are a result of, these changes is still to be determined.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Pulmão/virologia , Infecções Respiratórias/complicações , Infecções Respiratórias/virologia , Animais , Bactérias/classificação , Bacteroidetes/isolamento & purificação , Feminino , Firmicutes/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Lipocalina-2/análise , Camundongos , Camundongos Endogâmicos BALB C , Mucina-5AC/análise , Orthomyxoviridae , Infecções por Orthomyxoviridae/complicações , RNA Ribossômico 16S , Infecções por Vírus Respiratório Sincicial/complicações , Vírus Sinciciais Respiratórios , Vacinas Atenuadas/administração & dosagem
4.
Immunology ; 151(4): 451-463, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28375554

RESUMO

Age affects the immune response to vaccination, with individuals at the extremes of age responding poorly. The initial inflammatory response to antigenic materials shapes the subsequent adaptive response and so understanding is required about the effect of age on the profile of acute inflammatory mediators. In this study we measured the local and systemic inflammatory response after influenza vaccination or infection in neonatal, young adult and aged mice. Mice were immunized intramuscularly with inactivated influenza vaccine with and without the adjuvant MF59 and then challenged with H1N1 influenza. Age was the major factor affecting the inflammatory profile after vaccination: neonatal mice had more interleukin-1α (IL-1α), C-reactive protein (CRP) and granulocyte-macrophage colony-stimulating factor (GMCSF), young adults more tumour necrosis factor-α (TNF), and elderly mice more interleukin-1 receptor antagonist (IL-1RA), IL-2RA and interferon-γ-induced protein 10 (IP10). Notably the addition of MF59 induced IL-5, granulocyte colony-stimulating factor (G-CSF), Keratinocyte Chemotractant (KC) and monocyte chemoattractant protein 1 (MCP1) in all ages of animals and levels of these cytokines correlated with antibody responses. Age also had an impact on the efficacy of vaccination: neonatal and young adult mice were protected against challenge, but aged mice were not. There were striking differences in the localization of the cytokine response depending on the route of exposure: vaccination led to a high serum response whereas intranasal infection led to a low serum response but a high lung response. In conclusion, we demonstrate that age affects the inflammatory response to both influenza vaccination and infection. These age-induced differences need to be considered when developing vaccination strategies for different age groups.


Assuntos
Envelhecimento/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/sangue , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/virologia , Camundongos , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA