Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 711000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603239

RESUMO

Bacillus mycoides SeITE01 is an environmental isolate that transforms the oxyanion selenite ( SeO 3 2 - ) into the less bioavailable elemental selenium (Se0) forming biogenic selenium nanoparticles (Bio-SeNPs). In the present study, the reduction of sodium selenite (Na2SeO3) by SeITE01 strain and the effect of SeO 3 2 - exposure on the bacterial cells was examined through untargeted metabolomics. A time-course approach was used to monitor both cell pellet and cell free spent medium (referred as intracellular and extracellular, respectively) metabolites in SeITE01 cells treated or not with SeO 3 2 - . The results show substantial biochemical changes in SeITE01 cells when exposed to SeO 3 2 - . The initial uptake of SeO 3 2 - by SeITE01 cells (3h after inoculation) shows both an increase in intracellular levels of 4-hydroxybenzoate and indole-3-acetic acid, and an extracellular accumulation of guanosine, which are metabolites involved in general stress response adapting strategies. Proactive and defensive mechanisms against SeO 3 2 - are observed between the end of lag (12h) and beginning of exponential (18h) phases. Glutathione and N-acetyl-L-cysteine are thiol compounds that would be mainly involved in Painter-type reaction for the reduction and detoxification of SeO 3 2 - to Se0. In these growth stages, thiol metabolites perform a dual role, both acting against the toxic and harmful presence of the oxyanion and as substrate or reducing sources to scavenge ROS production. Moreover, detection of the amino acids L-threonine and ornithine suggests changes in membrane lipids. Starting from stationary phase (24 and 48h), metabolites related to the formation and release of SeNPs in the extracellular environment begin to be observed. 5-hydroxyindole acetate, D-[+]-glucosamine, 4-methyl-2-oxo pentanoic acid, and ethanolamine phosphate may represent signaling strategies following SeNPs release from the cytoplasmic compartment, with consequent damage to SeITE01 cell membranes. This is also accompanied by intracellular accumulation of trans-4-hydroxyproline and L-proline, which likely represent osmoprotectant activity. The identification of these metabolites suggests the activation of signaling strategies that would protect the bacterial cells from SeO 3 2 - toxicity while it is converting into SeNPs.

2.
Nat Commun ; 12(1): 1399, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658521

RESUMO

Staphylococcus aureus is a prominent human pathogen that readily adapts to host immune defenses. Here, we show that, in contrast to Gram-negative pathogens, S. aureus induces a distinct airway immunometabolic response dominated by the release of the electrophilic metabolite, itaconate. The itaconate synthetic enzyme, IRG1, is activated by host mitochondrial stress, which is induced by staphylococcal glycolysis. Itaconate inhibits S. aureus glycolysis and selects for strains that re-direct carbon flux to fuel extracellular polysaccharide (EPS) synthesis and biofilm formation. Itaconate-adapted strains, as illustrated by S. aureus isolates from chronic airway infection, exhibit decreased glycolytic activity, high EPS production, and proficient biofilm formation even before itaconate stimulation. S. aureus thus adapts to the itaconate-dominated immunometabolic response by producing biofilms, which are associated with chronic infection of the human airway.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Staphylococcus aureus/patogenicidade , Succinatos/metabolismo , Adulto , Animais , Biofilmes/crescimento & desenvolvimento , Líquido da Lavagem Broncoalveolar , Metabolismo dos Carboidratos , Fibrose Cística/microbiologia , Regulação Bacteriana da Expressão Gênica , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Hidroliases/metabolismo , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Escarro/microbiologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Estresse Fisiológico , Succinatos/farmacologia , Ácido Succínico/metabolismo , Adulto Jovem
3.
Science ; 369(6510): 1481-1489, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32792462

RESUMO

Several species of intestinal bacteria have been associated with enhanced efficacy of checkpoint blockade immunotherapy, but the underlying mechanisms by which the microbiome enhances antitumor immunity are unclear. In this study, we isolated three bacterial species-Bifidobacterium pseudolongum, Lactobacillus johnsonii, and Olsenella species-that significantly enhanced efficacy of immune checkpoint inhibitors in four mouse models of cancer. We found that intestinal B. pseudolongum modulated enhanced immunotherapy response through production of the metabolite inosine. Decreased gut barrier function induced by immunotherapy increased systemic translocation of inosine and activated antitumor T cells. The effect of inosine was dependent on T cell expression of the adenosine A2A receptor and required costimulation. Collectively, our study identifies a previously unknown microbial metabolite immune pathway activated by immunotherapy that may be exploited to develop microbial-based adjuvant therapies.


Assuntos
Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Imunoterapia , Inosina/metabolismo , Neoplasias Intestinais/terapia , Lactobacillus johnsonii/metabolismo , Melanoma/terapia , Neoplasias Cutâneas/terapia , Neoplasias da Bexiga Urinária/terapia , Animais , Anticorpos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/terapia , Receptor A2A de Adenosina/metabolismo , Linfócitos T/imunologia
4.
Inflamm Bowel Dis ; 24(7): 1493-1502, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29788224

RESUMO

Significant alterations of intestinal microbiota and anemia are hallmarks of inflammatory bowel disease (IBD). It is widely accepted that iron is a key nutrient for pathogenic bacteria, but little is known about its impact on microbiota associated with IBD. We used a model device to grow human mucosa-associated microbiota in its physiological anaerobic biofilm phenotype. Compared to microbiota from healthy donors, microbiota from IBD patients generate biofilms ex vivo that were larger in size and cell numbers, contained higher intracellular iron concentrations, and exhibited heightened virulence in a model of human intestinal epithelia in vitro and in the nematode Caenorhabditis elegans. We also describe an unexpected iron-scavenging property for an experimental hydrogen sulfide-releasing derivative of mesalamine. The findings demonstrate that this new drug reduces the virulence of IBD microbiota biofilms through a direct reduction of microbial iron intake and without affecting bacteria survival or species composition within the microbiota. Metabolomic analyses indicate that this drug reduces the intake of purine nucleosides (guanosine), increases the secretion of metabolite markers of purine catabolism (urate and hypoxanthine), and reduces the secretion of uracil (a pyrimidine nucleobase) in complex multispecies human biofilms. These findings demonstrate a new pathogenic mechanism for dysbiotic microbiota in IBD and characterize a novel mode of action for a class of mesalamine derivatives. Together, these observations pave the way towards a new therapeutic strategy for treatment of patients with IBD.


Assuntos
Biofilmes , Disbiose/fisiopatologia , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Ferro/metabolismo , Adulto , Animais , Fenômenos Fisiológicos Bacterianos , Estudos de Casos e Controles , Modelos Animais de Doenças , Disbiose/microbiologia , Feminino , Homeostase , Humanos , Sulfeto de Hidrogênio , Doenças Inflamatórias Intestinais/complicações , Masculino , Mesalamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA