Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nat Microbiol ; 8(5): 860-874, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012419

RESUMO

Vaccines play a critical role in combating the COVID-19 pandemic. Future control of the pandemic requires improved vaccines with high efficacy against newly emerging SARS-CoV-2 variants and the ability to reduce virus transmission. Here we compare immune responses and preclinical efficacy of the mRNA vaccine BNT162b2, the adenovirus-vectored spike vaccine Ad2-spike and the live-attenuated virus vaccine candidate sCPD9 in Syrian hamsters, using both homogeneous and heterologous vaccination regimens. Comparative vaccine efficacy was assessed by employing readouts from virus titrations to single-cell RNA sequencing. Our results show that sCPD9 vaccination elicited the most robust immunity, including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue after challenge with heterologous SARS-CoV-2. Overall, our results demonstrate that live-attenuated vaccines offer advantages over currently available COVID-19 vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Vacinas Atenuadas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Vacina BNT162 , Pandemias , Mesocricetus
2.
Sci Transl Med ; 14(674): eabg8577, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36475904

RESUMO

Pneumonia is the most common cause of the acute respiratory distress syndrome (ARDS). Here, we identified loss of endothelial cystic fibrosis transmembrane conductance regulator (CFTR) as an important pathomechanism leading to lung barrier failure in pneumonia-induced ARDS. CFTR was down-regulated after Streptococcus pneumoniae infection ex vivo or in vivo in human or murine lung tissue, respectively. Analysis of isolated perfused rat lungs revealed that CFTR inhibition increased endothelial permeability in parallel with intracellular chloride ion and calcium ion concentrations ([Cl-]i and [Ca2+]i). Inhibition of the chloride ion-sensitive with-no-lysine kinase 1 (WNK1) protein with tyrphostin 47 or WNK463 replicated the effect of CFTR inhibition on endothelial permeability and endothelial [Ca2+]i, whereas WNK1 activation by temozolomide attenuated it. Endothelial [Ca2+]i transients and permeability in response to inhibition of either CFTR or WNK1 were prevented by inhibition of the cation channel transient receptor potential vanilloid 4 (TRPV4). Mice deficient in Trpv4 (Trpv4-/-) developed less lung edema and protein leak than their wild-type littermates after infection with S. pneumoniae. The CFTR potentiator ivacaftor prevented lung CFTR loss, edema, and protein leak after S. pneumoniae infection in wild-type mice. In conclusion, lung infection caused loss of CFTR that promoted lung edema formation through intracellular chloride ion accumulation, inhibition of WNK1, and subsequent disinhibition of TRPV4, resulting in endothelial calcium ion influx and vascular barrier failure. Ivacaftor prevented CFTR loss in the lungs of mice with pneumonia and may, therefore, represent a possible therapeutic strategy in people suffering from ARDS due to severe pneumonia.


Assuntos
Cloretos , Pneumonia , Humanos , Camundongos , Animais , Cálcio , Pulmão , Regulador de Condutância Transmembrana em Fibrose Cística , Canais de Cátion TRPV
3.
J Comp Pathol ; 193: 1-8, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35487618

RESUMO

Cell proliferation is a fundamental criterion in the assessment of malignant progression of many tumours and an essential parameter in several grading schemes. However, proliferation may be dependent on patient age and other variables, as shown in normal tissues, cultured cells and human neoplasms. We thus hypothesized that age or other patient or tumour-related parameters might generally affect proliferation in canine neoplasms, which might be of value for optimizing prognostic algorithms. We performed linear regression analyses to associate age, sex and tumour size with digitally quantified immunohistochemical Ki67 labelling indices (Ki67-LIs) of 495 canine tumours, including cutaneous mast cell tumours (MCTs, n = 70), soft tissue sarcomas (n = 61), plasmacytomas (n = 86), trichoblastomas (n = 62) and perianal gland adenomas (PGAs, n = 95) as well as testicular interstitial (n = 65) and Sertoli cell tumours (n = 56). In MCTs, the Ki67-LI increased 1.13-fold per year of age (P <0.05) in bitches but not in males. Conversely, in PGAs it rose 1.10-fold per year in males (P <0.05) while it decreased 0.95-fold in bitches (P = 0.37). Only in MCTs and PGAs was the Ki67-LI associated with tumour size, albeit in oppositional directions (MCTs: 1.26-fold per cm diameter, P <0.01; PGAs: 0.76-fold, P <0.01). No correlations were found in the other tumour types. The few sex-dependent correlations with patient age and tumour size established here indicate highly tumour-type specific mechanisms, but the diagnostic consequences are uncertain.


Assuntos
Doenças do Cão , Mastocitoma Cutâneo , Tumor de Células de Sertoli , Neoplasias Testiculares , Animais , Doenças do Cão/patologia , Cães , Humanos , Antígeno Ki-67/metabolismo , Masculino , Mastocitoma Cutâneo/veterinária , Tumor de Células de Sertoli/veterinária , Neoplasias Testiculares/patologia , Neoplasias Testiculares/veterinária
4.
mBio ; 13(2): e0375521, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35227071

RESUMO

New treatment options against the widespread cancerogenic gastric pathogen Helicobacter pylori are urgently needed. We describe a novel screening procedure for inhibitors of H. pylori flagellar biosynthesis. The assay is based on a flaA flagellin gene-luciferase reporter fusion in H. pylori and was amenable to multi-well screening formats with an excellent Z factor. We screened various compound libraries to identify virulence blockers ("antimotilins") that inhibit H. pylori motility or the flagellar type III secretion apparatus. We identified compounds that either inhibit both motility and the bacterial viability, or the flagellar system only, without negatively affecting bacterial growth. Novel anti-virulence compounds which suppressed flagellar biosynthesis in H. pylori were active on pure H. pylori cultures in vitro and partially suppressed motility directly, reduced flagellin transcript and flagellin protein amounts. We performed a proof-of-principle treatment study in a mouse model of chronic H. pylori infection and demonstrated a significant effect on H. pylori colonization for one antimotilin termed Active2 even as a monotherapy. The diversity of the intestinal microbiota was not significantly affected by Active2. In conclusion, the novel antimotilins active against motility and flagellar assembly bear promise to complement commonly used antibiotic-based combination therapies for treating and eradicating H. pylori infections. IMPORTANCE Helicobacter pylori is one of the most prevalent bacterial pathogens, inflicting hundreds of thousands of peptic ulcers and gastric cancers to patients every year. Antibacterial treatment of H. pylori is complicated due to the need of combining multiple antibiotics, entailing serious side effects and increasing selection for antibiotic resistance. Here, we aimed to explore novel nonantibiotic approaches to H. pylori treatment. We selected an antimotility approach since flagellar motility is essential for H. pylori colonization. We developed a screening system for inhibitors of H. pylori motility and flagellar assembly, and identified numerous novel antibacterial and anti-motility compounds (antimotilins). Selected compounds were further characterized, and one was evaluated in a preclinical therapy study in mice. The antimotilin compound showed a good efficacy to reduce bacterial colonization in the model, such that the antimotilin approach bears promise to be further developed into a therapy against H. pylori infection in humans.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Flagelos/metabolismo , Flagelina/genética , Flagelina/metabolismo , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Humanos , Camundongos , Estômago
5.
mBio ; 13(2): e0370521, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35229634

RESUMO

Combinations of direct-acting antivirals are needed to minimize drug resistance mutations and stably suppress replication of RNA viruses. Currently, there are limited therapeutic options against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and testing of a number of drug regimens has led to conflicting results. Here, we show that cobicistat, which is an FDA-approved drug booster that blocks the activity of the drug-metabolizing proteins cytochrome P450-3As (CYP3As) and P-glycoprotein (P-gp), inhibits SARS-CoV-2 replication. Two independent cell-to-cell membrane fusion assays showed that the antiviral effect of cobicistat is exerted through inhibition of spike protein-mediated membrane fusion. In line with this, incubation with low-micromolar concentrations of cobicistat decreased viral replication in three different cell lines including cells of lung and gut origin. When cobicistat was used in combination with remdesivir, a synergistic effect on the inhibition of viral replication was observed in cell lines and in a primary human colon organoid. This was consistent with the effects of cobicistat on two of its known targets, CYP3A4 and P-gp, the silencing of which boosted the in vitro antiviral activity of remdesivir in a cobicistat-like manner. When administered in vivo to Syrian hamsters at a high dose, cobicistat decreased viral load and mitigated clinical progression. These data highlight cobicistat as a therapeutic candidate for treating SARS-CoV-2 infection and as a potential building block of combination therapies for COVID-19. IMPORTANCE The lack of effective antiviral treatments against SARS-CoV-2 is a significant limitation in the fight against the COVID-19 pandemic. Single-drug regimens have so far yielded limited results, indicating that combinations of antivirals might be required, as previously seen for other RNA viruses. Our work introduces the drug booster cobicistat, which is approved by the FDA and typically used to potentiate the effect of anti-HIV protease inhibitors, as a candidate inhibitor of SARS-CoV-2 replication. Beyond its direct activity as an antiviral, we show that cobicistat can enhance the effect of remdesivir, which was one of the first drugs proposed for treatment of SARS-CoV-2. Overall, the dual action of cobicistat as a direct antiviral and a drug booster can provide a new approach to design combination therapies and rescue the activity of compounds that are only partially effective in monotherapy.


Assuntos
Tratamento Farmacológico da COVID-19 , Hepatite C Crônica , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Cobicistat , Cricetinae , Progressão da Doença , Humanos , Mesocricetus , Pandemias , SARS-CoV-2 , Carga Viral
6.
Viruses ; 13(11)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835096

RESUMO

With the exception of inactivated vaccines, all SARS-CoV-2 vaccines currently used for clinical application focus on the spike envelope glycoprotein as a virus-specific antigen. Compared to other SARS-CoV-2 genes, mutations in the spike protein gene are more rapidly selected and spread within the population, which carries the risk of impairing the efficacy of spike-based vaccines. It is unclear to what extent the loss of neutralizing antibody epitopes can be compensated by cellular immune responses, and whether the use of other SARS-CoV-2 antigens might cause a more diverse immune response and better long-term protection, particularly in light of the continued evolution towards new SARS-CoV-2 variants. To address this question, we explored immunogenicity and protective effects of adenoviral vectors encoding either the full-length spike protein (S), the nucleocapsid protein (N), the receptor binding domain (RBD) or a hybrid construct of RBD and the membrane protein (M) in a highly susceptible COVID-19 hamster model. All adenoviral vaccines provided life-saving protection against SARS-CoV-2-infection. The most efficient protection was achieved after exposure to full-length spike. However, the nucleocapsid protein, which triggered a robust T-cell response but did not facilitate the formation of neutralizing antibodies, controlled early virus replication efficiently and prevented severe pneumonia. Although the full-length spike protein is an excellent target for vaccines, it does not appear to be the only option for future vaccine design.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Imunidade Celular , Imunidade Humoral , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Cricetinae , Feminino , Inflamação , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Fosfoproteínas/imunologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
7.
Nat Commun ; 12(1): 4869, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381043

RESUMO

In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as a model for moderate COVID-19, we conduct a detailed longitudinal analysis of systemic and pulmonary cellular responses, and corroborate it with datasets from COVID-19 patients. Monocyte-derived macrophages in lungs exert the earliest and strongest transcriptional response to infection, including induction of pro-inflammatory genes, while epithelial cells show weak alterations. Without evidence for productive infection, endothelial cells react, depending on cell subtypes, by strong and early expression of anti-viral, pro-inflammatory, and T cell recruiting genes. Recruitment of cytotoxic T cells as well as emergence of IgM antibodies precede viral clearance at day 5 post infection. Investigating SARS-CoV-2 infected Syrian hamsters thus identifies cell type-specific effector functions, providing detailed insights into pathomechanisms of COVID-19 and informing therapeutic strategies.


Assuntos
COVID-19/imunologia , Modelos Animais de Doenças , Células Epiteliais Alveolares/imunologia , Animais , Cricetinae , Citocinas/genética , Citocinas/imunologia , Células Endoteliais/imunologia , Humanos , Imunoglobulina M/imunologia , Inflamação , Pulmão/imunologia , Macrófagos/imunologia , Mesocricetus , Monócitos/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Receptores Toll-Like/imunologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-33588467

RESUMO

Traditionally patient owners express their concerns that surgical or diagnostic procedures on a tumor may induce metastasis. In pets, this has been documented in only very rare occasions, e. g. needle path metastases after diagnostic fine needle biopsies of urinary bladder or prostatic tumors. Here, we describe a case of subcutaneous seeding of a feline intracranial grade 1 meningioma 6 months after surgical resection. A 10-year-old male neutered domestic shorthaired cat with typical neurological signs was diagnosed with an extra-axial contrast enhancing mass in the dorsal frontotemporal lobes using magnetic resonance imaging (MRI). Transfronto-parietal bone craniotomy was performed and the 24 × 19 × 22 mm large tumor was largely removed. Tumor recurrence after 12 months resulted in a second surgical tumor removal. In addition, 2 subcutaneous masses of 10 × 4 × 4 mm in size were removed at the site of the original surgical site which were fully separated from the recurring meningeal tumor by the intact frontal bone. Histology and immunohistochemistry suggested the same tumor growth in all 4 masses. Most likely the tumor seeding had been caused during the first surgery. After all, the risk of surgical seeding of a benign tumor seems very low.


Assuntos
Doenças do Gato/patologia , Neoplasias Meníngeas/veterinária , Meningioma/veterinária , Recidiva Local de Neoplasia/veterinária , Neoplasias de Tecido Conjuntivo/veterinária , Animais , Doenças do Gato/diagnóstico por imagem , Doenças do Gato/cirurgia , Gatos , Diagnóstico Diferencial , Imageamento por Ressonância Magnética/veterinária , Masculino , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Meningioma/diagnóstico por imagem , Meningioma/patologia , Meningioma/cirurgia , Recidiva Local de Neoplasia/patologia , Neoplasias de Tecido Conjuntivo/etiologia , Neoplasias de Tecido Conjuntivo/patologia , Neoplasias de Tecido Conjuntivo/cirurgia
9.
Artigo em Alemão | MEDLINE | ID: mdl-33086413

RESUMO

Lafora disease is an autosomal recessive lysosomal storage disorder leading to an accumulation of toxic glycogen bodies into the cells of the central nervous system and other tissues. In the progressive form of myoclonic epilepsy, clinical signs typically start around 7 years of age. Causal therapy is impossible, however, in the early stages the symptoms may at least be alleviated by modern antiepileptic drugs. In the case reported here, an approximately 7-year-old Beagle presented with daytime-dependent fasciculations, focal and generalized myoclonus ranging up to a brief tonic-clonic seizure. The signs could be triggered and augmented by stress, sounds and light. Histologic examination was performed on biopsy samples of skin, liver, muscle and nervous tissue to test for the clinical diagnosis of Lafora disease. Sarcoplasmic PAS-positive pla®ue deposits typical of Lafora bodies were detected in the muscle biopsies but not in any of the other specimens. Initial treatment with phenobarbital and imepitoin was unsuccessful. However, treatment with levetiracetam significantly alleviated the clinical signs. At time of writing this publication, 2 years following the diagnosis, the now 9-year-old dog shows occasional, stress-related increase in fokal myoclonic seizures. Episodes of collapse or tonic-clonic seizures did not occur to any further extent.


Assuntos
Anticonvulsivantes/uso terapêutico , Doenças do Cão , Doença de Lafora , Animais , Doenças do Cão/diagnóstico , Doenças do Cão/tratamento farmacológico , Cães , Doença de Lafora/diagnóstico , Doença de Lafora/tratamento farmacológico , Doença de Lafora/veterinária , Levetiracetam/uso terapêutico
10.
PLoS Pathog ; 16(3): e1008340, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226027

RESUMO

Combination immunotherapy (CIT) is currently applied as a treatment for different cancers and is proposed as a cure strategy for chronic viral infections. Whether such therapies are efficient during an acute infection remains elusive. To address this, inhibitory receptors were blocked and regulatory T cells depleted in acutely Friend retrovirus-infected mice. CIT resulted in a dramatic expansion of cytotoxic CD4+ and CD8+ T cells and a subsequent reduction in viral loads. Despite limited viral replication, mice developed fatal immunopathology after CIT. The pathology was most severe in the gastrointestinal tract and was mediated by granzyme B producing CD4+ and CD8+ T cells. A similar post-CIT pathology during acute Influenza virus infection of mice was observed, which could be prevented by vaccination. Melanoma patients who developed immune-related adverse events under immune checkpoint CIT also presented with expanded granzyme-expressing CD4+ and CD8+ T cell populations. Our data suggest that acute infections may induce immunopathology in patients treated with CIT, and that effective measures for infection prevention should be applied.


Assuntos
Anticorpos/administração & dosagem , Melanoma/imunologia , Melanoma/terapia , Infecções por Retroviridae/imunologia , Linfócitos T Reguladores/imunologia , Infecções Tumorais por Vírus/imunologia , Animais , Antígeno B7-H1/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Vírus da Leucemia Murina de Friend/fisiologia , Humanos , Imunoterapia/efeitos adversos , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
11.
Proc Natl Acad Sci U S A ; 117(16): 9042-9053, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32241891

RESUMO

RNA has been proposed as an important scaffolding factor in the nucleus, aiding protein complex assembly in the dense intracellular milieu. Architectural contributions of RNA to cytosolic signaling pathways, however, remain largely unknown. Here, we devised a multidimensional gradient approach, which systematically locates RNA components within cellular protein networks. Among a subset of noncoding RNAs (ncRNAs) cosedimenting with the ubiquitin-proteasome system, our approach unveiled ncRNA MaIL1 as a critical structural component of the Toll-like receptor 4 (TLR4) immune signal transduction pathway. RNA affinity antisense purification-mass spectrometry (RAP-MS) revealed MaIL1 binding to optineurin (OPTN), a ubiquitin-adapter platforming TBK1 kinase. MaIL1 binding stabilized OPTN, and consequently, loss of MaIL1 blunted OPTN aggregation, TBK1-dependent IRF3 phosphorylation, and type I interferon (IFN) gene transcription downstream of TLR4. MaIL1 expression was elevated in patients with active pulmonary infection and was highly correlated with IFN levels in bronchoalveolar lavage fluid. Our study uncovers MaIL1 as an integral RNA component of the TLR4-TRIF pathway and predicts further RNAs to be required for assembly and progression of cytosolic signaling networks in mammalian cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Interferon Tipo I/genética , Proteínas de Membrana Transportadoras/metabolismo , RNA não Traduzido/metabolismo , Infecções Respiratórias/imunologia , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adulto , Idoso , Buffy Coat/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/sangue , Interferon Tipo I/imunologia , Macrófagos , Masculino , Pessoa de Meia-Idade , Fosforilação/genética , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , RNA não Traduzido/sangue , RNA não Traduzido/genética , RNA-Seq , Infecções Respiratórias/sangue , Infecções Respiratórias/microbiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Adulto Jovem
12.
EMBO Mol Med ; 12(5): e10938, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32163240

RESUMO

The current seasonal inactivated influenza vaccine protects only against a narrow range of virus strains as it triggers a dominant antibody response toward the hypervariable hemagglutinin (HA) head region. The discovery of rare broadly protective antibodies against conserved regions in influenza virus proteins has propelled research on distinct antigens and delivery methods to efficiently induce broad immunity toward drifted or shifted virus strains. Here, we report that adeno-associated virus (AAV) vectors expressing influenza virus HA or chimeric HA protected mice against homologous and heterologous virus challenges. Unexpectedly, immunization even with wild-type HA induced antibodies recognizing the HA-stalk and activating FcγR-dependent responses indicating that AAV-vectored expression balances HA head- and HA stalk-specific humoral responses. Immunization with AAV-HA partially protected also ferrets against a harsh virus challenge. Results from this study provide a rationale for further clinical development of AAV vectors as influenza vaccine platform, which could benefit from their approved use in human gene therapy.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Dependovirus/genética , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Influenza Humana/prevenção & controle , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle
13.
Front Vet Sci ; 6: 278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508433

RESUMO

A 2-year-old, 12 kg, intact male crossbreed dog was presented with respiratory distress, exercise intolerance, and gagging. Plain thoracic radiographs revealed severe pleural effusion. Although bilateral needle thoracocentesis and chest tube placement were performed, no re-expansion of the lung lobes occurred. Pleural effusion was of chylous quality and led to lung entrapment. Computer tomography revealed a highly atrophic and atelectatic right middle lung lobe. The remaining lung lobes were only expanded to ~40%. Visceral pleura and pericardium showed a heterogeneous thickening consistent with pleural fibrosis. Partial pericardiectomy with resection of the middle lung lobe through a right lateral thoracotomy was performed. Ligation of the thoracic duct and ablation of the cisterna chyli was achieved through a single paracostal approach. Histopathology revealed chronic-active proliferative beginning granulomatous pleuritis, fibrotic pericarditis, and partial coagulative necrosis with incomplete granulomatous sequestration in the resected middle lung lobe. Chylothorax resolved after surgical intervention. Active pleural effusion resolved, and lung entrapment changed to trapped lung disease. The remaining lung lobes re-expanded to ~80% over the following 6 days. The dog was discharged 10 days later. Mild to moderate pleural effusion of non-chylic quality was present during the following 4 months. Meloxicam was administered for 4 months because of its anti-fibrotic and anti-inflammatory properties. Fifteen months later, thoracic radiographs revealed full radiologic expansion of the lungs with persistent mild pleural fibrosis. To the authors' knowledge, this is the first case report of pneumothorax due pleural fibrosis caused by chylothorax in a dog with an excellent clinical outcome.

14.
J Equine Vet Sci ; 78: 6-9, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31203985

RESUMO

Recently, a syndrome called "equine idiopathic hemorrhagic cystitis" was described and clinical features compared with bladder neoplasia. In this case report, we describe a case of hemorrhagic cystitis with a favorable outcome in a high-performance dressage horse, in which exercise intensity might be the etiologic factor for the development of bladder-wall hyperplasia and hematuria. A 14-year-old Warmblood gelding was presented with a history of hematuria of 2-day duration. The high-level dressage horse had performed on the previous 3 weekends and was trained at least three times a week at performance intensity level. Sonographically, the dorsal bladder wall was about 1.5 cm thick and the different layers of the bladder wall could not be differentiated. Endoscopy revealed that the bladder was highly edematous and showed diffuse submucosal bleeding. Histopathological differential diagnoses were severe reactive hyperplasia or a low-grade transitional cell carcinoma. Four months later, bladder wall thickness had decreased to 1.0 cm and the different layers of the bladder wall were easily visible sonographically. Endoscopy showed a normal bladder mucosa. On histopathology, hyperplasia of the epithelium was significantly decreased. A diet low in calcium was recommended after the checkup, and the owners started working the horse very lightly for 2 days a week. Over the following 2 months, hematuria had not recurred. In conclusion, it seems likely that hemorrhagic cystitis in this horse was exercise-associated, but as repeated provocation by high exercise intensity was not performed in this case, this remains an assumption.


Assuntos
Cistite/veterinária , Condicionamento Físico Animal , Animais , Hematúria/veterinária , Hemorragia/veterinária , Cavalos , Masculino , Recidiva Local de Neoplasia/veterinária
15.
Vet Pathol ; 56(5): 715-724, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31060479

RESUMO

Senescent cells accumulate with age but tissue-based studies of senescent cells are limited to selected organs from humans, mice, and primates. Cell culture and xenograft studies have indicated that senescent cells in the microenvironment may play a role in tumor proliferation via paracrine activities. Dogs develop age-related conditions, including in the testis, but cellular senescence has not been confirmed. We hypothesized that senescent cells accumulate with age in canine testes and in the microenvironment of testicular tumors. We tested the expression of the established senescence markers γH2AX and p21 on normal formalin-fixed, paraffin-embedded testes from 15 young dogs (<18 months of age) and 15 old dogs (7-15 years of age) and correlated the findings with age-dependent morphological changes. A statistically significant age-dependent increase in the percentage of p21-expressing cells was observed for testicular fibroblasts (4-fold) and Leydig cells (8-fold). However, p21-expressing cells were still a rare event. In contrast, the percentage of γH2AX-positive cells did not increase with age. P21- and γH2AX-expressing cells were rare in the microenvironments of tumors. Age-dependent morphological changes included an increased mean number of Leydig cells per intertubular triangle (2.95-fold) and a decreased spermatogenesis score. To our surprise, no age-related changes were recorded for interstitial collagen content, mean tubular diameter, and epithelial area. Opposed to our expectations based on previous in vitro data, we did not identify evidence of a correlation between age-associated accumulation of senescent cells and testicular tumor development. Understanding the role of the microenvironment in senescence obviously remains a challenging task.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Criptorquidismo/veterinária , Doenças do Cão/patologia , Testículo/citologia , Animais , Biomarcadores , Doenças do Cão/metabolismo , Cães , Masculino , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia , Neoplasias Testiculares/veterinária , Testículo/patologia , Testículo/fisiologia
16.
Mol Genet Metab ; 127(1): 95-106, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30956123

RESUMO

The neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage disorders characterized by progressive neurodegeneration and declines in neurological functions. Pathogenic sequence variants in at least 13 genes underlie different forms of NCL, almost all of which are recessively inherited. To date 13 sequence variants in 8 canine orthologs of human NCL genes have been found to occur in 11 dog breeds in which they result in progressive neurological disorders similar to human NCLs. Canine NCLs can serve as models for preclinical evaluation of therapeutic interventions for these disorders. In most NCLs, the onset of neurological signs occurs in childhood, but some forms have adult onsets. Among these is CLN12 disease, also known as Kufor-Rakeb syndrome, PARK9, and spastic paraplegia78. These disorders result from variants in ATP13A2 which encodes a putative transmembrane ion transporter important for lysosomal function. Three Australian Cattle Dogs (a female and two of her offspring) were identified with a progressive neurological disorder with an onset of clinical signs at approximately 6 years of age. The affected dogs exhibited clinical courses and histopathology characteristic of the NCLs. Whole genome sequence analysis of one of these dogs revealed a homozygous c.1118C > T variant in ATP13A2 that predicts a nonconservative p.(Thr373Ile) amino acid substitution. All 3 affected dogs were homozygous for this variant, which was heterozygous in 42 of 394 unaffected Australian Cattle Dogs, the remainder of which were homozygous for the c.1118C allele. The high frequency of the mutant allele in this breed suggests that further screening for this variant should identify additional homozygous dogs and indicates that it would be advisable to perform such screening prior to breeding Australian Cattle Dogs.


Assuntos
Doenças do Cão/genética , Mutação de Sentido Incorreto , Lipofuscinoses Ceroides Neuronais/veterinária , ATPases Translocadoras de Prótons/genética , Alelos , Animais , Austrália , Cruzamento , Cães/genética , Feminino , Homozigoto , Transtornos de Início Tardio/genética , Lisossomos/patologia , Masculino , Lipofuscinoses Ceroides Neuronais/genética , Sequenciamento Completo do Genoma
17.
J Immunol ; 202(4): 1099-1111, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30651342

RESUMO

RNA editing by adenosine deaminases acting on dsRNA (ADAR) has become of increasing medical relevance, particularly because aberrant ADAR1 activity has been associated with autoimmunity and malignancies. However, the role of ADAR1 in dendritic cells (DC), representing critical professional APCs, is unknown. We have established conditional murine CD11c Cre-mediated ADAR1 gene ablation, which did not induce general apoptosis in CD11c+ cells but instead manifests in cell type-specific effects in DC subpopulations. Bone marrow-derived DC subset analysis revealed an incapacity to differentiate CD103 DC+ in both bulk bone marrow and purified pre-DC lineage progenitor assays. ADAR1 deficiency further resulted in a preferential systemic loss of CD8+/CD103+ DCs, revealing critical dependency on ADAR1, whereas other DC subpopulations were moderately affected or unaffected. Additionally, alveolar macrophages were depleted and dysfunctional, resembling pulmonary alveolar proteinosis. These results reveal an unrecognized role of ADAR1 in DC subset homeostasis and unveils the cell type-specific effects of RNA editing.


Assuntos
Adenosina Desaminase/metabolismo , Células Dendríticas/imunologia , Homeostase/imunologia , Macrófagos Alveolares/imunologia , Animais , Proliferação de Células , Células Dendríticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Edição de RNA , Linfócitos T/citologia , Linfócitos T/imunologia
18.
Crit Care ; 22(1): 282, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373626

RESUMO

BACKGROUND: Antibiotic exposure alters the microbiota, which can impact the inflammatory immune responses. Critically ill patients frequently receive antibiotic treatment and are often subjected to mechanical ventilation, which may induce local and systemic inflammatory responses and development of ventilator-induced lung injury (VILI). The aim of this study was to investigate whether disruption of the microbiota by antibiotic therapy prior to mechanical ventilation affects pulmonary inflammatory responses and thereby the development of VILI. METHODS: Mice underwent 6-8 weeks of enteral antibiotic combination treatment until absence of cultivable bacteria in fecal samples was confirmed. Control mice were housed equally throughout this period. VILI was induced 3 days after completing the antibiotic treatment protocol, by high tidal volume (HTV) ventilation (34 ml/kg; positive end-expiratory pressure = 2 cmH2O) for 4 h. Differences in lung function, oxygenation index, pulmonary vascular leakage, macroscopic assessment of lung injury, and leukocyte and lymphocyte differentiation were assessed. Control groups of mice ventilated with low tidal volume and non-ventilated mice were analyzed accordingly. RESULTS: Antibiotic-induced microbiota depletion prior to HTV ventilation led to aggravation of VILI, as shown by increased pulmonary permeability, increased oxygenation index, decreased pulmonary compliance, enhanced macroscopic lung injury, and increased cytokine/chemokine levels in lung homogenates. CONCLUSIONS: Depletion of the microbiota by broad-spectrum antibiotics prior to HTV ventilation renders mice more susceptible to developing VILI, which could be clinically relevant for critically ill patients frequently receiving broad-spectrum antibiotics.


Assuntos
Antibacterianos/efeitos adversos , Microbiota/efeitos dos fármacos , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Animais , Antibacterianos/uso terapêutico , Gasometria/métodos , Modelos Animais de Doenças , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico
19.
EBioMedicine ; 33: 134-143, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29885864

RESUMO

Many epithelial surfaces of the body are covered with protective mucus, and disrupted mucus homeostasis is coupled to diseases such as ulcerative colitis, helminth infection, cystic fibrosis, and chronic obstructive lung disease. However, little is known how a balanced mucus system is maintained. By investigating the involvement of proteases in colonic mucus dynamics we identified metalloprotease activity to be a key contributor to mucus expansion. The effect was mediated by calcium-activated chloride channel regulator 1 (CLCA1) as application of recombinant CLCA1 on intestinal mucus in freshly dissected tissue resulted in increased mucus thickness independently of ion and mucus secretion, but dependent on its metallohydrolase activity. Further, CLCA1 modulated mucus dynamics in both human and mouse, and knock-out of CLCA1 in mice was compensated for by cysteine proteases. Our results suggest that CLCA1 is involved in intestinal mucus homeostasis by facilitating processing and removal of mucus to prevent stagnation. In light of our findings, we suggest future studies to investigate if upregulation of CLCA1 in diseases associated with mucus accumulation could facilitate removal of mucus in an attempt to maintain homeostasis.


Assuntos
Canais de Cloreto/metabolismo , Colo/metabolismo , Muco/metabolismo , Animais , Canais de Cloreto/genética , Homeostase , Humanos , Metaloproteases/metabolismo , Camundongos , Camundongos Knockout , Proteólise , Proteoma/química
20.
Histochem Cell Biol ; 149(6): 619-633, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29610986

RESUMO

The secreted airway mucus cell protein chloride channel regulator, calcium-activated 1, CLCA1, plays a role in inflammatory respiratory diseases via as yet unidentified pathways. For example, deficiency of CLCA1 in a mouse model of acute pneumonia resulted in reduced cytokine expression with less leukocyte recruitment and the human CLCA1 was shown to be capable of activating macrophages in vitro. Translation of experimental data between human and mouse models has proven problematic due to several CLCA species-specific differences. We therefore characterized activation of macrophages by CLCA1 in detail in solely murine ex vivo and in vitro models. Only alveolar but not bone marrow-derived macrophages freshly isolated from C57BL6/J mice increased their expression levels of several pro-inflammatory and leukotactic cytokines upon CLCA1 stimulation. Among the most strongly regulated genes, we identified the host-protective and immunomodulatory airway mucus component BPIFA1, previously unknown to be expressed by airway macrophages. Furthermore, evidence from an in vivo Staphylococcus aureus pneumonia mouse model suggests that CLCA1 may also modify BPIFA1 expression in airway epithelial cells. Our data underscore and specify the role of mouse CLCA1 in inflammatory airway disease to activate airway macrophages. In addition to its ability to upregulate cytokine expression which explains previous observations in the Clca1-deficient S. aureus pneumonia mouse model, modulation of BPIFA1 expression expands the role of CLCA1 in airway disease to involvement in more complex downstream pathways, possibly including liquid homeostasis, airway protection, and antimicrobial defense.


Assuntos
Células da Medula Óssea/metabolismo , Canais de Cloreto/metabolismo , Citocinas/genética , Glicoproteínas/genética , Leucócitos/metabolismo , Macrófagos Alveolares/metabolismo , Fosfoproteínas/genética , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Canais de Cloreto/deficiência , Citocinas/metabolismo , Modelos Animais de Doenças , Glicoproteínas/metabolismo , Leucócitos/patologia , Macrófagos Alveolares/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA