Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38546538

RESUMO

Biomaterial-mediated bone tissue engineering (BTE) offers an alternative, interesting approach for the restoration of damaged bone tissues in postsurgery osteosarcoma treatment. This study focused on synthesizing innovative composite inks, integrating self-assembled silk fibroin (SF), tannic acids (TA), and electrospun bioactive glass nanofibers 70SiO2-25CaO-5P2O5 (BGNF). By synergistically combining the unique characteristics of these three components through self-assembly and microextrusion-based three-dimensional (3D) printing, our goal was to produce durable and versatile aerogel-based 3D composite scaffolds. These scaffolds were designed to exhibit hierarchical porosity along with antibacterial, antiosteosarcoma, and bone regeneration properties. Taking inspiration from mussel foot protein attachment chemistry involving the coordination of dihydroxyphenylalanine (DOPA) amino acids with ferric ions (Fe3+), we synthesized a tris-complex catecholate-iron self-assembled composite gel. This gel formation occurred through the coordination of oxidized SF (SFO) with TA and polydopamine-modified BGNF (BGNF-PDA). The dynamic nature of the coordination ligand-metal bonds within the self-assembled SFO matrix provided excellent shear-thinning properties, allowing the SFO-TA-BGNF complex gel to be extruded through a nozzle, facilitating 3D printing into scaffolds with outstanding shape fidelity. Moreover, the developed composite aerogels exhibited multifaceted features, including NIR-triggered photothermal antibacterial and in vitro photothermal antiosteosarcoma properties. In vitro studies showcased their excellent biocompatibility and osteogenic features as seeded cells successfully differentiated into osteoblasts, promoting bone regeneration in 21 days. Through comprehensive characterizations and biological validations, our antibacterial scaffold demonstrated promise as an exceptional platform for concurrent bone regeneration and bone cancer therapy, setting the stage for their potential clinical application.

2.
Autophagy ; 18(5): 1090-1107, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482812

RESUMO

Non-canonical autophagy pathways decorate single-membrane vesicles with Atg8-family proteins such as MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3). Phagosomes containing the bacterial pathogen Listeria monocytogenes (L.m.) can be targeted by a non-canonical autophagy pathway called LC3-associated phagocytosis (LAP), which substantially contributes to the anti-listerial activity of macrophages and immunity. We here characterized a second non-canonical autophagy pathway targeting L.m.-containing phagosomes, which is induced by damage caused to the phagosomal membrane by the pore-forming toxin of L.m., listeriolysin O. This pore-forming toxin-induced non-canonical autophagy pathway (PINCA) was the only autophagic pathway evoked in tissue macrophages deficient for the NADPH oxidase CYBB/NOX2 that produces the reactive oxygen species (ROS) that are required for LAP induction. Similarly, also bone marrow-derived macrophages (BMDM) exclusively targeted L.m. by PINCA as they completely failed to induce LAP because of insufficient production of ROS through CYBB, in part, due to low expression of some CYBB complex subunits. Priming of BMDM with proinflammatory cytokines such as TNF and IFNG/IFNγ increased ROS production by CYBB and endowed them with the ability to target L.m. by LAP. Targeting of L.m. by LAP remained relatively rare, though, preventing LAP from substantially contributing to the anti-listerial activity of BMDM. Similar to LAP, the targeting of L.m.-containing phagosomes by PINCA promoted their fusion with lysosomes. Surprisingly, however, this did not substantially contribute to anti-listerial activity of BMDM. Thus, in contrast to LAP, PINCA does not have clear anti-listerial function suggesting that the two different non-canonical autophagy pathways targeting L.m. may have discrete functions.Abbreviations: actA/ActA: actin assembly-inducing protein A; ATG: autophagy-related; BMDM: Bone marrow-derived macrophages; CALCOCO2/NDP52: calcium-binding and coiled-coil domain-containing protein 2; CYBA/p22phox: cytochrome b-245 light chain; CYBB/NOX2: cytochrome b(558) subunit beta; E. coli: Escherichia coli; IFNG/IFNγ: interferon gamma; L.m.: Listeria monocytogenes; LAP: LC3-associated phagocytosis; LGALS: galectin; LLO: listeriolysin O; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NCF1/p47phox: neutrophil cytosol factor 1; NCF2/p67phox: neutrophil cytosol factor 2; NCF4/p67phox: neutrophil cytosol factor 4; Peritoneal macrophages: PM; PINCA: pore-forming toxin-induced non-canonical autophagy; plc/PLC: 1-phosphatidylinositol phosphodiesterase; PMA: phorbol 12-myristate 13-acetate; RB1CC1/FIP200: RB1-inducible coiled-coil protein 1; ROS: reactive oxygen species; S. aureus: Staphylococcus aureus; S. flexneri: Shigella flexneri; SQSTM1/p62: sequestosome 1; S. typhimurium: Salmonella typhimurium; T3SS: type III secretion system; TNF: tumor necrosis factor; ULK: unc-51 like autophagy activating kinase; PM: peritoneal macrophages; WT: wild type.


Assuntos
Autofagia , Listeria monocytogenes , Autofagia/fisiologia , Escherichia coli/metabolismo , Listeria monocytogenes/metabolismo , Macrófagos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus
3.
ACS Biomater Sci Eng ; 7(9): 4545-4556, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34415718

RESUMO

Scaffold-mediated tissue engineering has become a golden solution for the regeneration of damaged bone tissues that lack self-regeneration capability. A successful scaffold in bone tissue engineering comprises a multitude of suitable biological, microarchitectural, and mechanical properties acting as different signaling cues for the cells to mediate the new tissue formation. Therefore, careful design of bioactive scaffold macro- and microstructures in multiple length scales and biophysical properties fulfilling the tissue repair demands are necessary yet challenging to achieve. Herein, we have developed an antibacterial and biocompatible silica-silk fibroin (SF) gel-based ink through novel yet simple chemical approaches of sol-gel and self-assembly followed by processing the obtained gels as three-dimensional (3D) hybrid aerogel-based scaffolds exploiting the advanced materials design approaches of micro-extrusion-based 3D printing, and directional freeze-casting/drying approaches. As the main constituent of the hybrid biocompatible scaffold of this study, we used the SF extracted from Bombyx mori silkworm cocoon. However, to increase the cell responsivity and bactericidal efficiency of the final scaffold, thiol-ended antimicrobial and cell adhesive peptide sequence (SH-CM-RGD) was conjugated to silica-SF hybrid gels via covalent attachment using a spacer molecule through either preprint (prior to sol-gel) or during the post-printing steps on the previously printed silica-SF gel. In the next step, the hybrid Silica-SF-CM-RGD hydrogel ink was 3D-printed into the construct with interconnected porous structure with hierarchically organized porosity and a combination of several promising properties. Namely, due to the covalent linkage of the antibacterial peptide to the SF, the scaffold shows potent bactericidal efficiency toward Gram-positive and Gram-negative bacteria. Moreover, nanostructured silica components in the 3D-printed composites could intertwine with SF-CM-RGD to support the mechanical properties in the final scaffold and the final osteoconductivity of the scaffold. This study supports the promising properties of 3D-printed silica-SF-based hybrid aerogels constructs for repairing bone defect.


Assuntos
Fibroínas , Nanoestruturas , Antibacterianos/farmacologia , Biomimética , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Hidrogéis , Peptídeos , Porosidade , Impressão Tridimensional , Dióxido de Silício , Alicerces Teciduais
4.
Front Immunol ; 12: 633629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868252

RESUMO

Although the crucial role of professional phagocytes for the clearance of S. aureus infections is well-established, several studies indicate an adverse role of leukocytes in the dissemination of S. aureus during infection. Since only little is known about macrophages in this context, we analyzed the role of macrophages, and in particular reactive oxygen species deficiency, for the seeding of S. aureus metastases. Infection of bone marrow-derived macrophages (BMDM) with S. aureus revealed that NADPH oxidase 2 (NOX2-) deficient, but not NOX1- or NOX4-deficient, BMDM failed to clear intracellular S. aureus. Despite of larger intracellular bacterial burden, NOX2-deficient BMDM showed significantly improved survival. Intravenous injection of mice with in vitro-infected BMDMs carrying intracellular viable S. aureus led to higher bacterial loads in kidney and liver of mice compared to injection with plain S. aureus. An even higher frequency of liver abscesses was observed in mice infected with S. aureus-loaded nox2-/- BMDM. Thus, the improved intracellular survival of S. aureus and improved viability of NOX2-deficient BMDM is associated with an aggravated metastatic dissemination of S. aureus infection. A combination of vancomycin and the intracellularly active antibiotic rifampicin led to complete elimination of S. aureus from liver within 48 h, which was not achieved with vancomycin treatment alone, underscoring the impact of intracellular S. aureus on the course of disease. The results of our study indicate that intracellular S. aureus carried by macrophages are sufficient to establish a systemic infection. This suggests the inclusion of intracellularly active antibiotics in the therapeutic regimen of invasive S. aureus infections, especially in patients with NADPH oxidase deficiencies such as chronic granulomatous disease.


Assuntos
Macrófagos/microbiologia , Viabilidade Microbiana , NADPH Oxidase 2/genética , Índice de Gravidade de Doença , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Animais , Feminino , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/análise , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/patogenicidade
5.
Mol Biol Cell ; 17(3): 1075-84, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16371511

RESUMO

Slow Wallerian degeneration (Wld(S)) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD(+) synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination factor Ube4b, has not been excluded. In wild-type Ube4b, N70 is part of a sequence essential for ubiquitination activity but its role is not understood. We report direct binding of N70 to valosin-containing protein (VCP; p97/Cdc48), a protein with diverse cellular roles including a pivotal role in the ubiquitin proteasome system. Interaction with Wld(S) targets VCP to discrete intranuclear foci where ubiquitin epitopes can also accumulate. Wld(S) lacking its N-terminal 16 amino acids (N16) neither binds nor redistributes VCP, but continues to accumulate in intranuclear foci, targeting its intrinsic NAD(+) synthesis activity to these same foci. Wild-type Ube4b also requires N16 to bind VCP, despite a more C-terminal binding site in invertebrate orthologues. We conclude that N-terminal sequences of Wld(S) protein influence the intranuclear location of both ubiquitin proteasome and NAD(+) synthesis machinery and that an evolutionary recent sequence mediates binding of mammalian Ube4b to VCP.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Adenosina Trifosfatases , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Ciclo Celular/química , Células Cultivadas , Chlorocebus aethiops , Evolução Molecular , Células HeLa , Humanos , Espaço Intranuclear/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA