Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 113: 1-15, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28916473

RESUMO

NADPH oxidases (NOX) have many biological roles, but their regulation to control production of potentially toxic ROS molecules remains unclear. A previously identified insertion sequence of 21 residues (called NIS) influences NOX activity, and its predicted flexibility makes it a good candidate for providing a dynamic switch controlling the NOX active site. We constructed NOX2 chimeras in which NIS had been deleted or exchanged with those from other NOXs (NIS1, 3 and 4). All contained functional heme and were expressed normally at the plasma membrane of differentiated PLB-985 cells. However, NOX2-ΔNIS and NOX2-NIS1 had neither NADPH-oxidase nor reductase activity and exhibited abnormal translocation of p47phox and p67phox to the phagosomal membrane. This suggested a functional role of NIS. Interestingly after activation, NOX2-NIS3 cells exhibited superoxide overproduction compared with wild-type cells. Paradoxically, the Vmax of purified unstimulated NOX2-NIS3 was only one-third of that of WT-NOX2. We therefore hypothesized that post-translational events regulate NOX2 activity and differ between NOX2-NIS3 and WT-NOX2. We demonstrated that Ser486, a phosphorylation target of ataxia telangiectasia mutated kinase (ATM kinase) located in the NIS of NOX2 (NOX2-NIS), was phosphorylated in purified cytochrome b558 after stimulation with phorbol 12-myristate-13-acetate (PMA). Moreover, ATM kinase inhibition and a NOX2 Ser486Ala mutation enhanced NOX activity whereas a Ser486Glu mutation inhibited it. Thus, the absence of Ser486 in NIS3 could explain the superoxide overproduction in the NOX2-NIS3 mutant. These results suggest that PMA-stimulated NOX2-NIS phosphorylation by ATM kinase causes a dynamic switch that deactivates NOX2 activity. We hypothesize that this downregulation is defective in NOX2-NIS3 mutant because of the absence of Ser486.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Regulação da Expressão Gênica , NADPH Oxidase 2/metabolismo , Fagócitos/metabolismo , Processamento de Proteína Pós-Traducional , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , NADPH Oxidase 2/genética , Fagócitos/enzimologia , Fosforilação , Transdução de Sinais
2.
Hum Mutat ; 38(2): 152-159, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27790796

RESUMO

Dent-2 disease and Lowe syndrome are two pathologies caused by mutations in inositol polyphosphate 5-phosphatase OCRL gene. Both conditions share proximal tubulopathy evolving to chronic kidney failure. Lowe syndrome is in addition defined by a bilateral congenital cataract, intellectual disability, and hypotonia. The pathology evolves in two decades to a severe condition with renal complications and a fatal issue. We describe here a proof of principle for a targeted gene therapy on a mutation of the OCRL gene that is associated with Lowe syndrome. The affected patient bears a deep intronic mutation inducing a pseudo-exon inclusion in the mRNA, leading to a OCRL-1 protein loss. An exon-skipping strategy was designed to correct the effect of the mutation in cultured cells. We show that a recombinant U7-modified small RNA efficiently triggered the restoration of normal OCRL expression at mRNA and protein levels in patient's fibroblasts. Moreover, the PI(4,5)P2 accumulation and cellular alterations that are hallmark of OCRL-1 dysfunction were also rescued. Altogether, we provide evidence that the restoration of OCRL-1 protein, even at a reduced level, through RNA-based therapy represents a potential therapeutic approach for patients with OCRL splice mutations.


Assuntos
Íntrons , Mutação , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Alelos , Processamento Alternativo , Substituição de Aminoácidos , Pré-Escolar , Ativação Enzimática , Éxons , Fibroblastos , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Imagem Molecular , Síndrome Oculocerebrorrenal/diagnóstico , Fenótipo
3.
Biores Open Access ; 3(6): 311-26, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25469316

RESUMO

Chronic granulomatous disease (CGD) is an inherited orphan disorder caused by mutations in one of the five genes encoding reduced nicotinamide-adenine-dinucleotide-phosphate oxidase subunits, which subsequently lead to impairment in the production of microbicidal reactive oxygen species (ROS). In order to offer several cell line models of CGD and therefore support research on pathophysiology and new therapeutic approaches, we optimized protocols to differentiate induced pluripotent stem cells (iPSCs) from wild-type, X(0)-, AR22(0)- and AR47(0)-CGD patient's fibroblasts into neutrophils and into macrophages. Aberrant genetic clones were discarded after chromosome karyotyping and array-comparative genomic hybridization analysis. All remaining iPSC lines showed human embryonic stem cell-like morphology, expressed all tested pluripotency markers and formed embryoid bodies that contained cells originating from all three primary germ layers. Furthermore, each CGD patient-specific iPSC line retained the gp91 (phox) , p47 (phox) , and p22 (phox) mutations found in the corresponding patient's neutrophils. The average production of CD34(+) progenitors was of 1.5×10(6) cells after 10 days of differentiation of 10×10(6) iPSCs. They were terminally differentiated into about 3×10(5) neutrophils or into 3×10(7) macrophages. Based on morphological, phenotypical, and functional criteria both phagocyte types were mature and indistinguishable from the native human neutrophils and macrophages. However, neutrophils and macrophages derived from X(0)-, AR22(0)-, and AR47(0)-CGD patient-specific iPSC lines lacked ROS production and the corresponding mutated proteins. To simplify the phagocytes' production upon request, progenitors can be cryopreserved. In conclusion, we describe a reproducible, simple, and efficient way to generate neutrophils and macrophages from iPSCs and provide a new cellular model for the AR22(0)-CGD genetic form that has not been described before.

4.
Biochem J ; 464(3): 425-37, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25252997

RESUMO

Cytochrome b558, the redox core of the NADPH oxidase (NOX) complex in phagocytes, is composed of NOX2 and p22phox, the synthesis of which is intimately connected but not fully understood. We reproduced 10 rare X-minus chronic granulomatous disease (CGD) mutations of highly conserved residues in NOX1-NOX4, in X0-CGD PLB-985 cells in order to analyse their impact on the synthesis of cytochrome b558. According to the impact of these mutations on the level of expression of NADPH oxidase 2 (NOX2) and its activity, mutants were categorized into group A (W18C, E309K, K315del and I325F), characterized by a linear relationship between NOX2 expression and NOX activity, and group B (H338Y, P339H, G389A and F656-F570del), showing an absence of NOX activity associated with variable levels of NOX2 expression. These last residues belong to the FAD-binding pocket of NOX2, suggesting that this functional domain also plays a role in the structural integrity of NOX2. Finally, we observed an abnormal accumulation of p65 (65-kDa monomer), the NOX2 precursor and p65-p22phox dissociation in the W18C, E309K, I325F and G389A mutants, pointing out a possible role of the first transmembrane domain (Trp18), and the region between the membrane and the dehydrogenase domain of NOX2 (Glu309, Ile325 and Gly389), in the binding with p22phox.


Assuntos
Grupo dos Citocromos b/biossíntese , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/biossíntese , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Fagócitos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Humanos , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , NADPH Oxidase 2 , NADPH Oxidases/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Homologia de Sequência de Aminoácidos
5.
J Biol Chem ; 287(10): 7556-72, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22194609

RESUMO

Adherens junctions are required for vascular endothelium integrity. These structures are formed by the clustering of the homophilic adhesive protein VE-cadherin, which recruits intracellular partners, such as ß- and α-catenins, vinculin, and actin filaments. The dogma according to which α-catenin bridges cadherin·ß-catenin complexes to the actin cytoskeleton has been challenged during the past few years, and the link between the VE-cadherin·catenin complex and the actin cytoskeleton remains unclear. Recently, epithelial protein lost in neoplasm (EPLIN) has been proposed as a possible bond between the E-cadherin·catenin complex and actin in epithelial cells. Herein, we show that EPLIN is expressed at similar levels in endothelial and epithelial cells and is located at interendothelial junctions in confluent cells. Co-immunoprecipitation and GST pulldown experiments provided evidence that EPLIN interacts directly with α-catenin and tethers the VE-cadherin·catenin complex to the actin cytoskeleton. In the absence of EPLIN, vinculin was delocalized from the junctions. Furthermore, suppression of actomyosin tension using blebbistatin triggered a similar vinculin delocalization from the junctions. In a Matrigel assay, EPLIN-depleted endothelial cells exhibited a reduced capacity to form pseudocapillary networks because of numerous breakage events. In conclusion, we propose a model in which EPLIN establishes a link between the cadherin·catenin complex and actin that is independent of actomyosin tension. This link acts as a mechanotransmitter, allowing vinculin binding to α-catenin and formation of a secondary molecular bond between the adherens complex and the cytoskeleton through vinculin. In addition, we provide evidence that the EPLIN clutch is necessary for stabilization of capillary structures in an angiogenesis model.


Assuntos
Citoesqueleto de Actina/metabolismo , Capilares/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Modelos Biológicos , Neovascularização Fisiológica/fisiologia , alfa Catenina/metabolismo , Citoesqueleto de Actina/genética , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Células CACO-2 , Caderinas/genética , Caderinas/metabolismo , Capilares/citologia , Proteínas do Citoesqueleto/genética , Cães , Células Endoteliais/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Mecanotransdução Celular/fisiologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Vinculina/genética , Vinculina/metabolismo , alfa Catenina/genética
6.
J Biol Chem ; 286(32): 28357-69, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21659519

RESUMO

Flavocytochrome b(558) (cytb) of phagocytes is a heterodimeric integral membrane protein composed of two subunits, p22(phox) and gp91(phox). The latter subunit, also known as Nox2, has a cytosolic C-terminal "dehydrogenase domain" containing FAD/NADPH-binding sites. The N-terminal half of Nox2 contains six predicted transmembrane α-helices coordinating two hemes. We studied the role of the second transmembrane α-helix, which contains a "hot spot" for mutations found in rare X(+) and X(-) chronic granulomatous disease. By site-directed mutagenesis and transfection in X-CGD PLB-985 cells, we examined the functional and structural impact of seven missense mutations affecting five residues. P56L and C59F mutations drastically influence the level of Nox2 expression indicating that these residues are important for the structural stability of Nox2. A53D, R54G, R54M, and R54S mutations do not affect spectral properties of oxidized/reduced cytb, oxidase complex assembly, FAD binding, nor iodonitrotetrazolium (INT) reductase (diaphorase) activity but inhibit superoxide production. This suggests that Ala-53 and Arg-54 are essential in control of electron transfer from FAD. Surprisingly, the A57E mutation partially inhibits FAD binding, diaphorase activity, and oxidase assembly and affects the affinity of immunopurified A57E cytochrome b(558) for p67(phox). By competition experiments, we demonstrated that the second transmembrane helix impacts on the function of the first intracytosolic B-loop in the control of diaphorase activity of Nox2. Finally, by comparing INT reductase activity of immunopurified mutated and wild type cytb under aerobiosis versus anaerobiosis, we showed that INT reduction reflects the electron transfer from NADPH to FAD only in the absence of superoxide production.


Assuntos
Flavina-Adenina Dinucleotídeo/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Di-Hidrolipoamida Desidrogenase/genética , Di-Hidrolipoamida Desidrogenase/metabolismo , Transporte de Elétrons/fisiologia , Estabilidade Enzimática/genética , Flavina-Adenina Dinucleotídeo/genética , Humanos , Glicoproteínas de Membrana/genética , Mutação de Sentido Incorreto , NADPH Oxidase 2 , NADPH Oxidases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Superóxidos/metabolismo
7.
J Biol Chem ; 285(43): 33197-33208, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20724480

RESUMO

The X(+)-linked chronic granulomatous disease (X(+)-CGD) variants are natural mutants characterized by defective NADPH oxidase activity but with normal Nox2 expression. According to the three-dimensional model of the cytosolic Nox2 domain, most of the X(+)-CGD mutations are located in/or close to the FAD/NADPH binding regions. A structure/function study of this domain was conducted in X(+)-CGD PLB-985 cells exactly mimicking 10 human variants: T341K, C369R, G408E, G408R, P415H, P415L, Δ507QKT509-HIWAinsert, C537R, L546P, and E568K. Diaphorase activity is defective in all these mutants. NADPH oxidase assembly is normal for P415H/P415L and T341K mutants where mutation occurs in the consensus sequences of NADPH- and FAD-binding sites, respectively. This is in accordance with their buried position in the three-dimensional model of the cytosolic Nox2 domain. FAD incorporation is abolished only in the T341K mutant explaining its absence of diaphorase activity. This demonstrates that NADPH oxidase assembly can occur without FAD incorporation. In addition, a defect of NADPH binding is a plausible explanation for the diaphorase activity inhibition in the P415H, P415L, and C537R mutants. In contrast, Cys-369, Gly-408, Leu-546, and Glu-568 are essential for NADPH oxidase complex assembly. However, according to their position in the three-dimensional model of the cytosolic domain of Nox2, only Cys-369 could be in direct contact with cytosolic factors during oxidase assembly. In addition, the defect in oxidase assembly observed in the C369R, G408E, G408R, and E568K mutants correlates with the lack of FAD incorporation. Thus, the NADPH oxidase assembly process and FAD incorporation are closely related events essential for the diaphorase activity of Nox2.


Assuntos
Flavina-Adenina Dinucleotídeo/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , NADP/metabolismo , Fagócitos/enzimologia , Sítios de Ligação , Linhagem Celular , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/genética , Regulação Enzimológica da Expressão Gênica , Doença Granulomatosa Crônica/enzimologia , Doença Granulomatosa Crônica/genética , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Mutação de Sentido Incorreto , NADP/química , NADP/genética , NADPH Oxidase 2 , NADPH Oxidases/química , NADPH Oxidases/genética , Estrutura Terciária de Proteína
8.
J Biol Chem ; 285(26): 20224-33, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20385549

RESUMO

The Epstein-Barr virus basic leucine zipper transcriptional activator ZEBRA was shown recently to cross the outer membrane of live cells and to accumulate in the nucleus of lymphocytes. We investigated the potential application of the Epstein-Barr virus trans-activator ZEBRA as a transporter protein to facilitate transduction of cargo proteins. Analysis of different truncated forms of ZEBRA revealed that the minimal domain (MD) required for internalization spans residues 170-220. MD efficiently transported reporter proteins such as enhanced green fluorescent protein (EGFP) and beta-galactosidase in several normal and tumor cell lines. Functionality of internalized cargo proteins was confirmed by beta-galactosidase activity in transduced cells, and no MD-associated cell toxicity was detected. Translocation of MD through the cell membrane required binding to cell surface-associated heparan sulfate proteoglycans as shown by strong inhibition of protein uptake in the presence of heparin. We found that internalization was blocked at 4 degrees C, whereas no ATP was required as shown by an only 25% decreased uptake efficiency in energy-depleted cells. Common endocytotic inhibitors such as nystatin, chlorpromazine, and wortmannin had no significant impact on MD-EGFP uptake. Only methyl-beta-cyclodextrin inhibited MD-EGFP uptake by 40%, implicating the lipid raft-mediated endocytotic pathway. These data suggest that MD-reporter protein transduction occurs mostly via direct translocation through the lipid bilayer and not by endocytosis. This mechanism of MD-mediated internalization is suitable for the efficient delivery of biologically active proteins and renders ZEBRA-MD a promising candidate for therapeutic protein delivery applications.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/metabolismo , beta-Galactosidase/metabolismo , Sítios de Ligação/genética , Linhagem Celular Tumoral , Sondas de DNA/genética , Sondas de DNA/metabolismo , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/farmacocinética , Células HeLa , Humanos , Imuno-Histoquímica , Cinética , Microscopia de Fluorescência , Mutação , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacocinética , Transativadores/genética , beta-Ciclodextrinas/farmacologia , beta-Galactosidase/genética , beta-Galactosidase/farmacocinética
9.
J Neurosci ; 27(17): 4716-24, 2007 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-17460084

RESUMO

In the germinative zone of the adult rodent brain, neural progenitors migrate into niches delimited by astrocyte processes and differentiate into neuronal precursors. In the present study, we report a modulating role for the scaffolding protein IQGAP1 in neural progenitor migration. We have identified IQGAP1 as a new marker of amplifying neural progenitor and neuronal precursor cells of the subventricular zone (SVZ) and the rostral migratory stream (RMS) in the adult mouse brain. To determine functions for IQGAP1 in neural progenitors, we compared the properties of neural progenitor cells from wild-type and Iqgap1-null mutant mice in vivo and in vitro. The in vivo studies reveal a delay in the transition of de novo neural progenitors into neuronal precursor cells in Iqgap1-null mice. In vitro, we demonstrated that IQGAP1 acts as a downstream effector in the vascular endothelial growth factor (VEGF)-dependent migratory response of neural progenitors that also impacts on their neuronal differentiation. The Rho-family GTPases cdc42/Rac1 and Lis1 are major partners of IQGAP1 in this migratory process. Finally, astrocytes of the neurogenic SVZ and RMS are shown to express VEGF. We propose that VEGF synthesized by astrocytes could be involved in the guidance of neural progenitors to neurogenic niches and that IQGAP1 is an effector of the VEGF-dependent migratory signal.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Movimento Celular/fisiologia , Neurônios/citologia , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Ventrículos Cerebrais/citologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Neuropeptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP , Proteínas Ativadoras de ras GTPase/genética
10.
J Leukoc Biol ; 81(1): 238-49, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17060362

RESUMO

The role of Leu505 of Nox2 on the NADPH oxidase activation process was investigated. An X-CGD PLB-985 cell line expressing the Leu505Arg Nox2 mutant was obtained, exactly mimicking the phenotype of a previously published X91+-CGD case. In a reconstituted cell-free system (CFS), NADPH oxidase and iodonitrotetrazolium (INT) reductase activities were partially maintained concomitantly with a partial cytosolic factors translocation to the plasma membrane. This suggests that assembly and electron transfer from NADPH occurred partially in the Leu505Arg Nox2 mutant. Moreover, in a simplified CFS using purified mutant cytochrome b558 and recombinant p67phox, p47phox, and Rac1proteins, we found that the Km for NADPH and for NADH was about three times higher than those of purified WT cytochrome b558, indicating that the Leu505Arg mutation induces a slight decrease of the affinity for NADPH and NADH. In addition, oxidase activity can be extended by increasing the amount of p67phox in the simplified CFS assay. However, the maximal reconstituted oxidase activity using WT purified cytochrome b558 could not be reached using mutant cytochrome b558. In a three-dimensional model of the C-terminal tail of Nox2, Leu505 appears to have a strategic position just at the entry of the NADPH binding site and at the end of the alpha-helical loop (residues 484-504), a potential cytosolic factor binding region. The Leu505Arg mutation seems to affect the oxidase complex activation process through alteration of cytosolic factors binding and more particularly the p67phox interaction with cytochrome b558, thus affecting NADPH access to its binding site.


Assuntos
Grupo dos Citocromos b/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Fagossomos/metabolismo , Fosfoproteínas/fisiologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Cromossomos Humanos X , Grupo dos Citocromos b/genética , Ativação Enzimática , Doença Granulomatosa Crônica/genética , Humanos , Leucina/química , Glicoproteínas de Membrana/química , Dados de Sequência Molecular , NADPH Oxidase 2 , NADPH Oxidases/química , NADPH Oxidases/genética , Neutrófilos/fisiologia , Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Sais de Tetrazólio/metabolismo
11.
J Biol Chem ; 281(5): 2882-92, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16282320

RESUMO

Although ions play important roles in the cell and chloroplast metabolism, little is known about ion transport across the chloroplast envelope. Using a proteomic approach specifically targeted to the Arabidopsis chloroplast envelope, we have identified HMA1, which belongs to the metal-transporting P1B-type ATPases family. HMA1 is mainly expressed in green tissues, and we validated its chloroplast envelope localization. Yeast expression experiments demonstrated that HMA1 is involved in copper homeostasis and that deletion of its N-terminal His-domain partially affects the metal transport. Characterization of hma1 Arabidopsis mutants revealed a lower chloroplast copper content and a diminution of the total chloroplast superoxide dismutase activity. No effect was observed on the plastocyanin content in these lines. The hma1 insertional mutants grew like WT plants in standard condition but presented a photosensitivity phenotype under high light. Finally, direct biochemical ATPase assays performed on purified chloroplast envelope membranes showed that the ATPase activity of HMA1 is specifically stimulated by copper. Our results demonstrate that HMA1 offers an additional way to the previously characterized chloroplast envelope Cu-ATPase PAA1 to import copper in the chloroplast.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/fisiologia , Cloroplastos/enzimologia , Luz , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Transporte de Cátions/genética , Clonagem Molecular , Cobre/metabolismo , ATPases Transportadoras de Cobre , Homeostase , Transporte de Íons , Dados de Sequência Molecular , Mutação , Membrana Nuclear/enzimologia , Proteínas de Plantas/fisiologia , Superóxido Dismutase/metabolismo , Leveduras/genética
12.
J Biol Chem ; 280(15): 14962-73, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15684431

RESUMO

Assembly of cytosolic factors p67(phox) and p47(phox) with cytochrome b(558) is one of the crucial keys for NADPH oxidase activation. Certain sequences of Nox2 appear to be involved in cytosolic factor interaction. The role of the D-loop (191)TSSTKTIRRS(200) and the C-terminal (484)DESQANHFAVHHDEEKD(500) of Nox2 on oxidase activity and assembly was investigated. Charged amino acids were mutated to neutral or reverse charge by directed mutagenesis to generate 21 mutants. Recombinant wild-type or mutant Nox2 were expressed in the X-CGD PLB-985 cell model. K195A/E, R198E, R199E, and RR198199QQ/AA mutations in the D-loop of Nox2 totally abolished oxidase activity. However, these D-loop mutants demonstrated normal p47(phox) translocation and iodonitrotetrazolium (INT) reductase activity, suggesting that charged amino acids of this region are essential for electron transfer from FAD to oxygen. Replacement of Nox2 D-loop with its homolog of Nox1, Nox3, or Nox4 was fully functional. In addition, fMLP (formylmethionylleucylphenylalanine)-activated R199Q-Nox2 and D-loop(Nox4)-Nox2 mutants exhibited four to eight times the NADPH oxidase activity of control cells, suggesting that these mutations lead to a more efficient oxidase activation process. In contrast, the D484T and D500A/R/G mutants of the alpha-helical loop of Nox2 exhibited no NADPH oxidase and INT reductase activities associated with a defective p47(phox) membrane translocation. This suggests that the alpha-helical loop of the C-terminal of Nox2 is probably involved in the correct assembly of the NADPH oxidase complex occurring during activation, permitting cytosolic factor translocation and electron transfer from NADPH to FAD.


Assuntos
Citosol/metabolismo , Glicoproteínas de Membrana/química , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Sistema Livre de Células , Grupo dos Citocromos b/farmacologia , Citosol/química , Di-Hidrolipoamida Desidrogenase/metabolismo , Transporte de Elétrons , Ativação Enzimática , Granulócitos/metabolismo , Humanos , Peróxido de Hidrogênio/química , Cinética , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , N-Formilmetionina Leucil-Fenilalanina/farmacologia , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/farmacologia , Oxigênio/química , Fosfoproteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Transfecção
13.
J Biol Chem ; 280(13): 12833-9, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15653689

RESUMO

Maurocalcine (MCa) is a 33-amino-acid residue peptide toxin isolated from the scorpion Scorpio maurus palmatus. External application of MCa to cultured myotubes is known to produce Ca2+ release from intracellular stores. MCa binds directly to the skeletal muscle isoform of the ryanodine receptor, an intracellular channel target of the endoplasmic reticulum, and induces long lasting channel openings in a mode of smaller conductance. Here we investigated the way MCa proceeds to cross biological membranes to reach its target. A biotinylated derivative of MCa was produced (MCa(b)) and complexed with a fluorescent indicator (streptavidine-cyanine 3) to follow the cell penetration of the toxin. The toxin complex efficiently penetrated into various cell types without requiring metabolic energy (low temperature) or implicating an endocytosis mechanism. MCa appeared to share the same features as the so-called cell-penetrating peptides. Our results provide evidence that MCa has the ability to act as a molecular carrier and to cross cell membranes in a rapid manner (1-2 min), making this toxin the first demonstrated example of a scorpion toxin that translocates into cells.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Venenos de Escorpião/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Biotinilação , Cálcio/química , Proteínas de Transporte/química , Diferenciação Celular , Linhagem Celular , Peptídeos Penetradores de Células , Endocitose , Retículo Endoplasmático/metabolismo , Produtos do Gene tat/metabolismo , Humanos , Cinética , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Peptídeos/química , Conformação Proteica , Isoformas de Proteínas , Transporte Proteico , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Retículo Sarcoplasmático/metabolismo , Venenos de Escorpião/farmacocinética , Transdução de Sinais , Temperatura , Fatores de Tempo
14.
J Biol Chem ; 280(6): 4013-6, 2005 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-15591063

RESUMO

Maurocalcine is a scorpion venom toxin of 33 residues that bears a striking resemblance to the domain A of the dihydropyridine voltage-dependent calcium channel type 1.1 (Cav1.1) subunit. This domain belongs to the II-III loop of Cav1.1, which is implicated in excitation-contraction coupling. Besides the structural homology, maurocalcine also modulates RyR1 channel activity in a manner akin to a synthetic peptide of domain A. Because of these similarities, we hypothesized that maurocalcine and domain A may bind onto an identical region(s) of RyR1. Using a set of RyR1 fragments, we demonstrate that peptide A and maurocalcine bind onto two discrete RyR1 regions: fragments 3 and 7 encompassing residues 1021-1631 and 3201-3661, respectively. The binding onto fragment 7 is of greater importance and was thus further investigated. We found that the amino acid region 3351-3507 of RyR1 (fragment 7.2) is sufficient for these interactions. Proof that peptide A and maurocalcine bind onto the same site is provided by competition experiments in which binding of fragment 7.2 to peptide A is inhibited by preincubation with maurocalcine. Moreover, when expressed in COS-7 cells, RyR1 carrying a deletion of fragment 7 shows a loss of interaction with both peptide A and maurocalcine. At the functional level, this deletion abolishes the maurocalcine induced stimulation of [3H]ryanodine binding onto microsomes of transfected COS-7 cells without affecting the caffeine and ATP responses.


Assuntos
Canais de Cálcio Tipo L/química , Caveolinas/química , Venenos de Escorpião/farmacologia , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Ligação Competitiva , Células COS , Caveolina 1 , Cromatografia , Clonagem Molecular , Microscopia Crioeletrônica , Microscopia de Fluorescência , Músculo Esquelético/metabolismo , Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Venenos de Escorpião/química , Transfecção
15.
Mol Cell Biol ; 23(9): 3274-86, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12697827

RESUMO

Although it is now well documented that metazoans have evolved general transcription factor (GTF) variants to regulate their complex patterns of gene expression, there is so far no information regarding the existence of specific GTFs in plants. Here we report the characterization of a ubiquitously expressed gene that encodes a bona fide novel transcription factor IIB (TFIIB)-related protein in Arabidopsis thaliana. We have shown that this protein is the founding member of a plant-specific TFIIB-related protein family named pBrp (for plant-specific TFIIB-related protein). Surprisingly, in contrast to common GTFs that are localized in the nucleus, the bulk of pBrp proteins are bound to the cytoplasmic face of the plastid envelope, suggesting an organelle-specific function for this novel class of TFIIB-related protein. We show that pBrp proteins harbor conditional proteolytic signals that can target these proteins for rapid turnover by the proteasome-mediated protein degradation pathway. Interestingly, under conditions of proteasome inhibition, pBrp proteins accumulate in the nucleus. Together, our results suggest a possible involvement of these proteins in an intracellular signaling pathway between plastids and the nucleus. Our data provide the first evidence for an organelle-related evolution of the eukaryotic general transcription machinery.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator de Transcrição TFIIB/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Evolução Biológica , Núcleo Celular/metabolismo , Clonagem Molecular , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Leupeptinas/farmacologia , Dados de Sequência Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Família Multigênica , Plastídeos/metabolismo , Complexo de Endopeptidases do Proteassoma , Análise de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica
16.
Biochem J ; 370(Pt 1): 175-83, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12403647

RESUMO

CD38 is a transmembrane glycoprotein that is expressed in many tissues throughout the body. In addition to its major NAD+-glycohydrolase activity, CD38 is also able to synthesize cyclic ADP-ribose, an endogenous calcium-regulating molecule, from NAD+. In the present study, we have compared ADP-ribosyl cyclase and NAD+-glycohydrolase activities in protein extracts of brains from developing and adult wild-type and Cd38 -/- mice. In extracts from wild-type brain, cyclase activity was detected spectrofluorimetrically, using nicotinamide-guanine dinucleotide as a substrate (GDP-ribosyl cyclase activity), as early as embryonic day 15. The level of cyclase activity was similar in the neonate brain (postnatal day 1) and then increased greatly in the adult brain. Using [14C]NAD+ as a substrate and HPLC analysis, we found that ADP-ribose is the major product formed in the brain at all developmental stages. Under the same experimental conditions, neither NAD+-glycohydrolase nor GDP-ribosyl cyclase activity could be detected in extracts of brains from developing or adult Cd38 -/- mice, demonstrating that CD38 is the predominant constitutive enzyme endowed with these activities in brain at all developmental stages. The activity measurements correlated with the level of CD38 transcripts present in the brains of developing and adult wild-type mice. Using confocal microscopy we showed, in primary cultures of hippocampal cells, that CD38 is expressed by both neurons and glial cells, and is enriched in neuronal perikarya. Intracellular NAD+-glycohydrolase activity was measured in hippocampal cell cultures, and CD38-dependent cyclase activity was higher in brain fractions enriched in intracellular membranes. Taken together, these results lead us to speculate that CD38 might have an intracellular location in neural cells in addition to its plasma membrane location, and may play an important role in intracellular cyclic ADP-ribose-mediated calcium signalling in brain tissue.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , Hipocampo/enzimologia , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase 1 , Animais , Antígenos CD/genética , Sequência de Bases , Western Blotting , Sinalização do Cálcio , Células Cultivadas , Centrifugação , Primers do DNA , Glicoproteínas de Membrana , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , NAD/metabolismo , RNA Mensageiro/genética
17.
J Biol Chem ; 277(49): 47770-8, 2002 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-12368288

RESUMO

The large majority of plastid proteins are nuclear-encoded and, thus, must be imported within these organelles. Unlike most of the outer envelope proteins, targeting of proteins to all other plastid compartments (inner envelope membrane, stroma, and thylakoid) is strictly dependent on the presence of a cleavable transit sequence in the precursor N-terminal region. In this paper, we describe the identification of a new envelope protein component (ceQORH) and demonstrate that its subcellular localization is limited to the inner membrane of the chloroplast envelope. Immunopurification, microsequencing of the natural envelope protein and cloning of the corresponding full-length cDNA demonstrated that this protein is not processed in the N-terminal region during its targeting to the inner envelope membrane. Transient expression experiments in plant cells were performed with truncated forms of the ceQORH protein fused to the green fluorescent protein. These experiments suggest that neither the N-terminal nor the C-terminal are essential for chloroplastic localization of the ceQORH protein. These observations are discussed in the frame of the endosymbiotic theory of chloroplast evolution and suggest that a domain of the ceQORH bacterial ancestor may have evolved so as to exclude the general requirement of an N-terminal plastid transit sequence.


Assuntos
Cloroplastos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Sequência de Bases , Transporte Biológico , Western Blotting , Membrana Celular/metabolismo , Clonagem Molecular , DNA Complementar/metabolismo , Detergentes/farmacologia , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Biblioteca Gênica , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Plasmídeos/metabolismo , Plastídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Spinacia oleracea/metabolismo , Fatores de Tempo , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA