Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Med Virol ; 95(8): e28995, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37522259

RESUMO

BK polyomavirus (BKV) is a small non-enveloped DNA virus. BKV infection or reactivation may cause BKV-associated nephropathy and hemorrhagic cystitis in immunosuppressed transplant recipients. No effective antivirals or prevention strategies are available against BKV infections. The current BKV reverse system employs the transfection of purified full-length linear viral genomes released by enzyme digestion from BKV genomic plasmids. The method is laborious and often results in variable DNA yield and quality, which can affect the efficiency of transfection and subsequent formation of circular viral genomes in cells. In this study, we report the generation of circular viral genomes by Cre-mediated DNA recombination in cells directly transfected with BKV precursor genomic plasmids. The novel system supported efficient viral expression and replication, and produced a higher level of infectious virions compared with the transfection with linear BKV genomes. Furthermore, we successfully constructed recombinant BKV capable of reporter gene expression. In conclusion, the novel BKV reverse genetic system allows for simpler manipulation of BKV genome with better virus yield, providing a tool for the study of BKV life cycle and antiviral screening.


Assuntos
Vírus BK , Transplante de Rim , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Humanos , Vírus BK/genética , Genética Reversa , DNA
2.
J Hepatocell Carcinoma ; 10: 599-609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37069959

RESUMO

Objective: Pre-S1 antigen (pre-S1) is a component of hepatitis B virus large surface antigen (L-HBsAg). This study aimed to investigate the association between clinical pre-S1 antigen (pre-S1) status and adverse prognostic events in chronic hepatitis B (CHB) patients. Methods: This study retrospectively enrolled 840 CHB patients with comprehensive clinical data, including 144 patients with multiple follow-up of pre-S1 status. All patients were tested for serum pre-S1 and divided into pre-S1 positive and negative groups. Single factor and logistic multiple regression analyses were performed to explore the association between pre-S1 and other HBV biomarkers with the risk of hepatocellular carcinoma (HCC) in CHB patients. The pre-S1 region sequences of HBV DNA were obtained from one pre-S1 positive and two pre-S1 negative treatment-naïve patients using polymerase chain reaction (PCR) amplification followed by Sanger sequencing. Results: The quantitative HBsAg level was significantly higher in the pre-S1 positive group than that in the pre-S1 negative group (Z=-15.983, P<0.001). The positive rate of pre-S1 increased significantly with the increase in HBsAg level (χ 2=317.963, P<0.001) and HBV DNA load (χ 2=15.745, P<0.001). The pre-S1 negative group had a higher HCC risk than the pre-S1 positive group (Z=-2.00, P=0.045, OR=1.61). Moreover, patients in the sustained pre-S1 negative group had a higher HCC risk (Z=-2.56, P=0.011, OR=7.12) than those in the sustained pre-S1 positive group. The sequencing results revealed mutations in the pre-S1 region from samples of pre-S1 negative patients, including frameshift and deletion mutations. Conclusion: Pre-S1 is a biomarker that indicates the presence and replication of HBV. Pre-S1 sustained negativity attributed to pre-S1 mutations in CHB patients may be associated with a higher risk of HCC, which has clinical significance and warrant further investigations.

3.
Nat Biomed Eng ; 6(3): 276-285, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35132229

RESUMO

The detection of samples at ultralow concentrations (one to ten copies in 100 µl) in biofluids is hampered by the orders-of-magnitude higher amounts of 'background' biomolecules. Here we report a molecular system, immobilized on a liquid-gated graphene field-effect transistor and consisting of an aptamer probe bound to a flexible single-stranded DNA cantilever linked to a self-assembled stiff tetrahedral double-stranded DNA structure, for the rapid and ultrasensitive electromechanical detection (down to one to two copies in 100 µl) of unamplified nucleic acids in biofluids, and also of ions, small molecules and proteins, as we show for Hg2+, adenosine 5'-triphosphate and thrombin. We implemented an electromechanical biosensor for the detection of SARS-CoV-2 into an integrated and portable prototype device, and show that it detected SARS-CoV-2 RNA in less than four minutes in all nasopharyngeal samples from 33 patients with COVID-19 (with cycle threshold values of 24.9-41.3) and in none of the 54 COVID-19-negative controls, without the need for RNA extraction or nucleic acid amplification.


Assuntos
COVID-19 , Grafite , COVID-19/diagnóstico , Humanos , Íons , RNA Viral/genética , SARS-CoV-2/genética
4.
Antiviral Res ; 190: 105076, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33865876

RESUMO

Chronic infection of hepatitis B virus (HBV) is a high risk factor for hepatic diseases, such as liver fibrosis, cirrhosis and hepatocellular carcinoma. Non-responders and hyporesponders to HBV vaccine are not protected from HBV infection. Patients that achieve autonomous or treatment-induced recovery are at risk of reactivation due to persistence of HBV covalently closed circular DNA (cccDNA) in hepatocytes. Interleukin 21 (IL-21) is a key regulator of HBV clearance in mouse models of HBV persistence: IL-21-based therapies effectively induces HBV clearance and protects mice from subsequent re-challenge. In this study, we explore the possibility of using IL-21 as prophylaxis against HBV by using mouse models of HBV persistence. HBV-naïve mice were transiently exposed to exogenous IL-21 through injection with recombinant adeno-associated virus expressing mouse IL-21 (AAV-IL-21). After extraneous IL-21 protein and DNA had become undetectable, mice were challenged with persistence-inducing HBV replicon plasmid through hydrodynamic injection. Viral persistence was analyzed by measuring viral antigens and DNA markers in serum and intrahepatic HBV DNA. For mechanistic studies, CD8+ T cell functions were blocked by repeated intraperitoneal injections of CD8 monoclonal antibodies in HBV-challenged mice. AAV-IL-21-injected mice quickly cleared HBV after HBV replicon challenge. In contrast, untreated mice and mice injected with control virus (AAV-Ctrl) allowed establishment of HBV persistence. Mechanistically, mice with prior IL-21 exposure displayed marked intrahepatic CD8+ T cell infiltrations, and CD8 blocking experiments demonstrated that CD8+ T cell responses functionally contributed toward clearance.


Assuntos
Dependovirus/genética , Vetores Genéticos , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Hepatite B/prevenção & controle , Interleucinas/administração & dosagem , Interleucinas/genética , Animais , Linfócitos T CD8-Positivos/imunologia , DNA Circular , Modelos Animais de Doenças , Hepatócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecção Persistente/imunologia , Infecção Persistente/prevenção & controle , Infecção Persistente/virologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Replicação Viral/imunologia
5.
Sci Bull (Beijing) ; 66(9): 925-936, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33318880

RESUMO

The SARS-CoV-2 infection is spreading rapidly worldwide. Efficacious antiviral therapeutics against SARS-CoV-2 is urgently needed. Here, we discovered that protoporphyrin IX (PpIX) and verteporfin, two Food and Drug Administration (FDA)-approved drugs, completely inhibited the cytopathic effect produced by SARS-CoV-2 infection at 1.25 µmol/L and 0.31 µmol/L, respectively, and their EC50 values of reduction of viral RNA were at nanomolar concentrations. The selectivity indices of PpIX and verteporfin were 952.74 and 368.93, respectively, suggesting a broad margin of safety. Importantly, PpIX and verteporfin prevented SARS-CoV-2 infection in mice adenovirally transduced with human angiotensin-converting enzyme 2 (ACE2). The compounds, sharing a porphyrin ring structure, were shown to bind viral receptor ACE2 and interfere with the interaction between ACE2 and the receptor-binding domain of viral S protein. Our study suggests that PpIX and verteporfin are potent antiviral agents against SARS-CoV-2 infection and sheds new light on developing novel chemoprophylaxis and chemotherapy against SARS-CoV-2.

6.
Proc Natl Acad Sci U S A ; 117(44): 27141-27147, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33024017

RESUMO

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the urgent need to rapidly develop therapeutic strategies for such emerging viruses without effective vaccines or drugs. Here, we report a decoy nanoparticle against COVID-19 through a powerful two-step neutralization approach: virus neutralization in the first step followed by cytokine neutralization in the second step. The nanodecoy, made by fusing cellular membrane nanovesicles derived from human monocytes and genetically engineered cells stably expressing angiotensin converting enzyme II (ACE2) receptors, possesses an antigenic exterior the same as source cells. By competing with host cells for virus binding, these nanodecoys effectively protect host cells from the infection of pseudoviruses and authentic SARS-CoV-2. Moreover, relying on abundant cytokine receptors on the surface, the nanodecoys efficiently bind and neutralize inflammatory cytokines including interleukin 6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF), and significantly suppress immune disorder and lung injury in an acute pneumonia mouse model. Our work presents a simple, safe, and robust antiviral nanotechnology for ongoing COVID-19 and future potential epidemics.


Assuntos
Infecções por Coronavirus/terapia , Citocinas/antagonistas & inibidores , Nanopartículas/uso terapêutico , Pneumonia Viral/terapia , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus , COVID-19 , Membrana Celular/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Células HEK293 , Humanos , Interleucina-6/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos ICR , Monócitos , Nanopartículas/química , Pandemias , Peptidil Dipeptidase A/metabolismo , Receptores de Citocinas/metabolismo , SARS-CoV-2 , Células THP-1
7.
Liver Int ; 40(4): 830-843, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31903720

RESUMO

BACKGROUND AND AIMS: Treatment of non-alcoholic steatohepatitis (NASH) is challenging, because suppressing fibrotic progression has not been achieved consistently by drug candidates currently in clinical trials. The aim of this study was to investigate the molecular interplays underlying NASH-associated fibrosis in a mouse NASH model and human specimens. METHODS: Mice were divided into 4 groups: Controls; NASH (high fat/Calorie diet plus high fructose and glucose in drinking water, HFCD-HF/G) for 16 weeks; HFCD-HF/G plus docosahexaenoic acid (DHA) for 16 or 8 weeks. RESULTS: Along with NASH progression, fibrotic deposition was documented in HFCD-HF/G-fed mice. Liver succinate content was significantly increased along with decreased expression of succinate dehydrogenase-A (SDH-A) in these mice; whereas, GPR-91 receptor expression was much enhanced in histology compared to control mice, and co-localized histologically with hepatic stellate cells (HSCs). Succinate content was increased in fatty acid-overloaded primary hepatocytes with significant oxidant stress and lipotoxicity. Exposure to succinate led to up-regulation of GPR-91 receptor in primary and immortalized HSCs. In contrast, suppression of GPR-91 receptor expression abolished succinate stimulatory role in GPR-91 expression and extracellular matrix production in HSCs. All these changes were minimized or abrogated by DHA supplementation in vivo or in vitro. Moreover, GPR-91 receptor expression correlates with severity of fibrosis in human NASH biopsy specimens. CONCLUSION: Succinate accumulation in steatotoic hepatocytes may result in HSC activation through GPR-91 receptor signalling in NASH progression, and the cross-talk between hepatocytes and HSC through GPR-91 signalling is most likely to be the molecular basis of fibrogenesis in NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Fibrose , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Succínico
8.
Acta Biochim Biophys Sin (Shanghai) ; 51(4): 431-440, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30811522

RESUMO

Chronic hepatitis B virus (HBV) infection remains a global public health problem. HBV-encoded X protein (HBx) is a multifunctional regulator that is required to initiate and maintain productive HBV infection, and is involved in HBV-related hepatocellular carcinoma (HCC). Inhibitors that interfere with the functions of HBx could be useful not only for the inhibition of HBV replication but also for the prevention or treatment of HBV-related HCC. To screen molecules that target HBx on a large scale remains a technical challenge due to a lack of sensitive and high-throughput system. In this work, we established an in vitro bioluminescent reporter system for screening HBx-targeting molecules. The system is based on a secretory fusion protein that combines HBx and NanoLuc (HBx-Nluc). The measured activity of NanoLuc in the culture supernatant of HBx-Nluc-expressing cells directly reflects the level of secreted HBx-Nluc. HBx protein-targeting intracellular anti-HBx single-chain variable fragment and RNA-targeting shRNA significantly reduced the secreted NanoLuc activity in HBx-Nluc-expressing cells. This system is simple and sensitive, and compatible with continuous non-disruptive screening, suggesting its potential usefulness for high-throughput screening and evaluating HBx-targeting molecules.


Assuntos
Luciferases/metabolismo , Luminescência , Nanotecnologia/métodos , Transativadores/metabolismo , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/metabolismo , Células HEK293 , Células Hep G2 , Hepatite B/diagnóstico , Hepatite B/genética , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Humanos , Luciferases/genética , Microscopia de Fluorescência , Nanoestruturas , Reprodutibilidade dos Testes , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
9.
Sci Rep ; 9(1): 20323, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889135

RESUMO

Hepatitis B virus (HBV) X protein (HBx) plays diverse roles in both viral life cycle and HBV-related carcinogenesis. Its interaction with DNA damage-binding protein 1 (DDB1) was shown to be essential for engendering cellular conditions favorable for optimal viral transcription and replication. Previously, we described a mouse monoclonal antibody against HBx (anti-HBx 2A7) recognizing HBx encoded by representative strains from 7 of 8 known HBV genotypes. In this work, we further characterized 2A7 in order to explore its potential usefulness in HBx-targeting applications. We demonstrated that 2A7 recognizes a linear epitope mapped to L89PKVLHKR96 on HBx, a segment that is highly conserved across genotypes and coincidentally overlaps with the DDB1-interacting segment. HBx-DDB1 binding could be inhibited by 2A7 in vitro, suggesting therapeutic potential. Nucleic acid and amino acid sequences of 2A7 were then obtained, which allowed construction of recombinant antibody and single chain variable fragments (scFv). 2A7-derived recombinant antibody and scFv recapitulate 2A7's HBx-binding capacity and epitope specificity. We also reported preliminary results using cell-penetrating peptide for delivering 2A7 antibody across cell membrane to target intracellular HBx. Anti-HBx 2A7 and 2A7-derived scFv characterized here may give rise to novel HBx-targeting diagnostics and therapeutics for HBV- and HBx-related pathologies.


Assuntos
Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Antivirais/farmacologia , Proteínas de Ligação a DNA/metabolismo , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Reações Cruzadas , Epitopos/química , Epitopos/imunologia , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/imunologia , Transativadores/química , Proteínas Virais Reguladoras e Acessórias/química
10.
Biochem Biophys Res Commun ; 492(1): 18-26, 2017 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-28821433

RESUMO

Melanoma is the most aggressive type of skin cancer. Melanoma has an extremely poor prognosis because of its high potential for vascular invasion, metastasis and recurrence. The mechanism of melanoma metastasis is not well understood. ATP-binding cassette sub-family B member 5 (ABCB5) plays a key role in melanoma growth. However, it is uncertain what function ABCB5 may exert in melanoma metastasis. In this report, we for the first time demonstrate ABCB5 as a crucial factor that promotes melanoma metastasis. ABCB5 positive (ABCB5+) malignant melanoma initiating cells (MMICs) display a higher metastatic potential compared with ABCB5 negative (ABCB5-) melanoma subpopulation. Knockdown of ABCB5 expression reduces melanoma cell migration and invasion in vitro and melanoma pulmonary metastasis in tumor xenograft mice. ABCB5 and NF-κB p65 expression levels are positively correlated in both melanoma tissues and cell lines. Consequently, ABCB5 activates the NF-κB pathway by inhibiting p65 ubiquitination to enhance p65 protein stability. Our finding highlights ABCB5 as a novel pro-metastasis factor and provides a potential therapeutic target for melanoma.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Metástase Neoplásica , Fator de Transcrição RelA/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Movimento Celular , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Estabilidade Proteica
11.
Hepatology ; 66(6): 1894-1909, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28646551

RESUMO

Angiogenesis has been proven to play an important role in the progression of hepatocellular carcinoma (HCC). However, the molecular mechanism underlying HCC angiogenesis is not well understood. In this study, Prospero-related homeobox 1 (PROX1) was identified as a novel proangiogenic factor in HCC cell lines and tissues. A strong positive correlation was found between the levels of PROX1 and microvessel density in HCC tissues. Knockdown of PROX1 expression in HCC cells significantly inhibited the in vitro capillary tube formation by human vascular endothelial cells and in vivo angiogenesis of HCC, while overexpression of PROX1 in HCC cells induced the opposite effects. PROX1 and nuclear factor κB p65 expression levels were positively correlated in both HCC tissues and cell lines. PROX1 enhances the nuclear accumulation of p65 and stabilizes p65 by recruiting ubiquitin-specific protease 7 to prevent p65 ubiquitination. Consequently, PROX1 activated nuclear factor κB signaling and selectively promoted expression of the proangiogenic interleukin-8 (IL-8) by epigenetically stimulating the IL-8 promoter. Finally, progression of high PROX1 expression HCC in tumor xenograft mice could be effectively contained by an anti-IL-8 monoclonal antibody. CONCLUSIONS: We have identified PROX1 as a crucial promoter of HCC angiogenesis; our study provides an insight into PROX1's function in HCC progression and the potential therapeutic application of anti-IL-8 antibody in high PROX1 expression HCC patients. (Hepatology 2017;66:1894-1909).


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Homeodomínio/metabolismo , Interleucina-8/metabolismo , Neoplasias Hepáticas/metabolismo , Neovascularização Patológica , Proteínas Supressoras de Tumor/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Humanos , Interleucina-8/antagonistas & inibidores , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Estabilidade Proteica , Distribuição Aleatória , Fator de Transcrição RelA/metabolismo , Ativação Transcricional , Peptidase 7 Específica de Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
PLoS One ; 12(3): e0174017, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28319127

RESUMO

The role of hepatocyte nuclear factor 1α (HNF1α) in the regulation of gene expression and replication of hepatitis B virus (HBV) is not fully understood. Previous reports have documented the induction of the expression of viral large surface protein (LHBs) by HNF1α through activating viral Sp1 promoter. Large amount of LHBs can block the secretion of hepatitis B surface antigen (HBsAg). Here we found that HNF1α overexpression inhibited HBV gene expression and replication in Huh7 cells, resulting in marked decreases in HBsAg, hepatitis B e antigen (HBeAg) and virion productions. In contrast, knockdown of endogenous HNF1α expression enhanced viral gene expression and replication. This HNF1α-mediated inhibition did not depend on LHBs. Instead, HNF1α promoted the expression of NF-κB p65 and slowed p65 protein degradation, leading to nuclear accumulation of p65 and activation of the NF-κB signaling, which in turn inhibited HBV gene expression and replication. The inhibitor of the NF-κB signaling, IκBα-SR, could abrogate this HNF1α-mediated inhibition. While the dimerization domain of HNF1α was dispensable for the induction of LHBs expression, all the domains of HNF1α was required for the inhibition of HBV gene expression. Our findings identify a novel role of HNF1α in the regulation of HBV gene expression and replication.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Vírus da Hepatite B/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Vírus da Hepatite B/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Mutação , Domínios Proteicos , Proteólise , Transdução de Sinais/fisiologia , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Replicação Viral/fisiologia
13.
J Neurochem ; 141(1): 48-62, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129433

RESUMO

Celastrol, a plant-derived triterpene, has neuroprotective benefit in the models of neurodegenerative disorders that are characterized by overproduction of reactive oxygen species (ROS). Recently, we have reported that cadmium (Cd) activates c-Jun N-terminal kinase (JNK) pathway leading to neuronal cell death by inducing ROS inactivation of protein phosphatase 5 (PP5), and celastrol prevents Cd-activated JNK pathway against neuronal apoptosis. Therefore, we hypothesized that celastrol could hinder Cd induction of ROS-dependent PP5-JNK signaling pathway from apoptosis in neuronal cells. Here, we show that celastrol attenuated Cd-induced expression of NADPH oxidase 2 (NOX2) and its regulatory proteins (p22phox , p40phox , p47phox , p67phox , and Rac1), as well as the generation of ROS in PC12 cells and primary neurons. Also, N-acetyl-l-cysteine, a ROS scavenger, potentiated celastrol's inhibition of the events in the cells triggered by Cd, implying neuroprotection by celastrol via blocking Cd-evoked NOX2-derived ROS. Further research revealed that celastrol was involved in the regulation of PP5 inactivation and JNK/c-Jun activation induced by Cd, as celastrol prevented Cd from reducing PP5 expression, and over-expression of wild-type PP5 or dominant negative c-Jun strengthened celastrol's inhibition of Cd-induced phosphorylation of JNK and/or c-Jun, as well as apoptosis in neuronal cells. Of importance, inhibiting NOX2 with apocynin or silencing NOX2 by RNA interference enhanced the inhibitory effects of celastrol on Cd-induced inactivation of PP5, activation of JNK/c-Jun, ROS, and apoptosis in the cells. Furthermore, we noticed that expression of wild-type PP5 or dominant negative c-Jun, or pretreatment with JNK inhibitor SP600125 reinforced celastrol's suppression of Cd-induced NOX2 and its regulatory proteins, and consequential ROS in neuronal cells. These findings indicate that celastrol ameliorates Cd-induced neuronal apoptosis via targeting NOX2-derived ROS-dependent PP5-JNK signaling pathway. Our data highlight a beneficial role of celastrol in the prevention of Cd-induced oxidative stress and neurodegenerative diseases.


Assuntos
Cádmio/toxicidade , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos ICR , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Triterpenos Pentacíclicos , Fosfoproteínas Fosfatases/antagonistas & inibidores , Ratos , Tripterygium
14.
J Neurochem ; 128(2): 256-266, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24111524

RESUMO

Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Celastrol, a plant-derived triterpene, has shown neuroprotective effects in various disease models. However, little is known regarding the effect of celastrol on Cd-induced neurotoxicity. Here, we show that celastrol protected against Cd-induced apoptotic cell death in neuronal cells. This is supported by the findings that celastrol strikingly attenuated Cd-induced viability reduction, morphological change, nuclear fragmentation, and condensation, as well as activation of caspase-3 in neuronal cells. Concurrently, celastrol remarkably blocked Cd-induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinases 1/2 and p38, in neuronal cells. Inhibition of JNK by SP600125 or over-expression of dominant negative c-Jun potentiated celastrol protection against Cd-induced cell death. Furthermore, pre-treatment with celastrol prevented Cd down-regulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and activation of phosphoinositide 3'-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling in neuronal cells. Over-expression of wild-type PTEN enhanced celastrol inhibition of Cd-activated Akt/mTOR signaling and cell death in neuronal cells. The findings indicate that celastrol prevents Cd-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. Our results strongly suggest that celastrol may be exploited for the prevention of Cd-induced neurodegenerative disorders. Celastrol, a plant-derived triterpene, has shown neuroprotective effects. However, little is known regarding the effect of celastrol on cadmium (Cd) neurotoxicity. This study underscores that celastrol prevents Cd-induced neuronal apoptosis via inhibiting activation of JNK (c-Jun N-terminal kinase) and Akt/mTOR network. Celastrol suppresses Cd-activated Akt/mTOR pathway by elevating PTEN (phosphatase and tensin homolog). The findings suggest that celastrol may be exploited for the prevention of Cd-induced neurodegenerative disorders.


Assuntos
Cloreto de Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Triterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Células PC12 , PTEN Fosfo-Hidrolase/metabolismo , Triterpenos Pentacíclicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
15.
Neuropathol Appl Neurobiol ; 40(6): 759-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24299490

RESUMO

AIMS: This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). METHODS: NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signalling pathway in brain neurones were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. RESULTS: Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. CONCLUSIONS: NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases.


Assuntos
Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cádmio/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Cádmio/sangue , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neurônios/metabolismo , Neurônios/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA