Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39295299

RESUMO

With the development of technology, multifunctional multiband emitters have been paid much attention due to their wide range of applications, such as LIDAR detection, spectroscopic sensing, and infrared thermal management. However, the development of such emitters is impeded by incompatible structural requirements of different electromagnetic wavebands. Here, we demonstrate coupled modulation between near-infrared (NIR) laser-wavelength and long-wavelength-infrared by constructing a multifunctional emitter (MFE) with a structure of Al/HfO2/VO2, utilizing the phase transition of VO2. The MFE displays excellent thermal modulation capability within the 8-14 µm range, achieving a thermal insulation effect (ε8-14 µm = 0.18) at low temperatures, and heat dissipation effect (ε8-14 µm = 0.64) at high temperatures. The MFE's radiation power regulation capability is 145.06 W m-2 between a temperature of 0 to 60 °C. Moreover, the MFE possesses a large reflectivity modulation value of 0.78 at NIR laser-wavelength (1.06 µm) with a short phase transition time of 1003 ms under 3 W cm-2 laser irradiation. This study provides a guideline for the coordinated control of electromagnetic waves and intelligent collaborative thermal management through simple structural design, thus, having broad implications in energy saving and thermal information processing.

2.
ACS Appl Mater Interfaces ; 16(8): 10352-10360, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38357765

RESUMO

Reconfigurable infrared (IR) materials have widespread applications in thermal management and smart IR concealment. Although various reconfigurable IR materials can be customized by positive or negative differential VO2-based resonators, their insightful mechanism remains unknown. Here, we comprehensively investigate the fundamental design rule of reconfigurable thermal radiation between positive and negative differential thermal radiation properties for the first time. Importantly, the skin depth of VO2 film in the metal state is investigated to clarify the transformation from positive to negative differential thermal radiation properties, and the critical thickness is further derived, providing important guidance in designing the reconfigurable thermal radiation regulator. Furthermore, the reconfigurable multistate thermal images had been presented into one plate. The resulting emittance variation (△ε8-14 µm) of the VO2-based resonator can change from 0.61 to -0.53, which consummates the ability for diverse demands such as infrared concealment, thermal illusion, and thermal management. This work constitutes a promising and universal route toward designing whole smart devices and may create new scientific and technological opportunities for platforms that can benefit from reconfigurable electromagnetic manipulation.

3.
ACS Appl Mater Interfaces ; 14(2): 2683-2690, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34981915

RESUMO

Dynamic thermal management materials attract fast-increasing interest due to their adaptability to changing environments and greater energy savings as compared to static materials. However, the high transition temperature and the low emittance tunability of the vanadium dioxide (VO2)-based infrared radiation regulators limit their practical applications. This study addresses these issues by proposing a smart infrared radiation regulator based on a Fabry-Pérot cavity structure (VO2/HfO2/Al), which is prepared by high-power impulse magnetron sputtering (HiPIMS) and has the potential for large-scale production. Remarkably, the outstanding emittance tunability reaches 0.51, and the phase transition temperature is lowered to near a room temperature of 27.5 °C by tungsten (W) doping. In addition, a numerical thermal management power of 196.3 W/m2 (at 8-14 µm band) can be obtained from 0 to 60 °C. As a proof-of-concept, the demonstrated capabilities of the VO2 infrared radiation regulator show great potentials in a wide range of applications for the thermal management of buildings and vehicles.

4.
Small ; 17(35): e2100446, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34013667

RESUMO

Thermal radiation in the mid-infrared region profoundly affects human lives in various fields, including thermal management, imaging, sensing, camouflage, and thermography. Due to their fixed emissivities, radiance features of conventional materials are usually proportional to the quadruplicate of surface temperature, which set the limit, that one type of material can only present a single thermal function. Therefore, it is necessary and urgent to design materials for dynamic thermal radiation regulations to fulfill the demands of the age of intelligent machines. Recently, the ability of some smart materials to dynamically regulate thermal radiation has been evaluated. These materials are found to be competent enough for various commands, thereby, providing better alternatives and tremendously promoting the commercial potentials. In this review, the dynamic regulatory mechanisms and recent progress in the evaluation of these smart materials are summarized, including thermochromic materials, electrochromic materials, mechanically and humidity responsive materials, with the potential applications, insufficient problems, and possible strategies highlighted.


Assuntos
Materiais Inteligentes , Humanos , Umidade , Temperatura , Termografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA