Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biomol Biomed ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39217429

RESUMO

This study aimed to investigate the prognostic value of the pan-immune-inflammation value (PIV) in patients with locally advanced rectal cancer (LARC) who received neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision. We retrospectively collected and analyzed the clinicopathological data of 215 resected LARC patients. X-tile software was used to determine the optimal threshold value for PIV in predicting overall survival (OS). The predictive ability of PIV for pathological complete regression (pCR), OS, and disease-free survival (DFS) was evaluated and compared with other inflammation markers. Univariate and multivariate logistic regression analyses for pCR and Cox regression analyses for OS and DFS were conducted. The optimal threshold value for PIV was determined to be 454.7 based on the X-tile software. Patients were then categorized into low (≤ 454.7) and high (> 454.7) PIV groups comprising 153 and 62 patients, respectively. PIV demonstrated superior predictive ability for pCR, OS, and DFS compared to other inflammation markers. LARC patients with low PIV had significantly higher pCR (P = 0.029), OS (P = 0.002), and DFS (P = 0.001) rates compared to those with high PIV. Multivariate regression analysis identified PIV as an independent prognostic factor for pCR (odds ratio = 0.32; 95% confidence interval [CI], 0.10-0.80; P = 0.014), OS (hazard ratio = 3.08; 95% CI, 1.77-5.35; P = 0.001), and DFS (hazard ratio = 2.53; 95% CI, 1.58-4.06; P = 0.002). This study confirmed that preoperative PIV could serve as a useful independent prognostic factor in LARC patients treated with nCRT.

3.
Biomol Biomed ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151098

RESUMO

This study aimed to investigate the prognostic value of the Naples Prognostic Score (NPS) in patients with locally advanced cervical cancer (LACC) who received curative concurrent chemoradiotherapy (CCRT). Clinicopathological data from 213 (training set) and 106 (validation set) LACC cases undergoing CCRT were retrospectively analyzed. The receiver operating characteristic curve (ROC) was used to compare the predictive ability of NPS and other indicators for survival. Cox proportional hazard regression was conducted for overall survival (OS) and progression-free survival (PFS). A prediction model using a nomogram was developed with independent prognostic factors in the training set and validated in the validation set. The 5-year OS for the NPS = 1, 2, and 3 groups was 56.8%, 45.4%, and 28.9% (P < 0.001), and the 5-year PFS for the NPS = 1, 2, and 3 groups was 44.9%, 36.7%, and 28.4% (P = 0.001), respectively. NPS showed better predictive ability for OS and PFS compared to other indicators. Multivariate regression analysis identified NPS as an independent prognostic factor for OS (P < 0.001) and PFS (P < 0.001). A predictive nomogram based on NPS was established and validated. The C-indices of the nomogram in the training set were 0.722 for OS and 0.683 for PFS, while in the validation set the C-indices were 0.731 for OS and 0.693 for PFS. This study confirmed that preoperative NPS could serve as a useful independent prognostic factor in LACC patients treated with CCRT.

4.
Naturwissenschaften ; 111(5): 45, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141101

RESUMO

6-methoxybenzoxazolinone (6-MBOA) is a secondary plant metabolite predominantly found in monocotyledonous plants, especially Gramineae. In damaged tissue, 2-ß-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-Glc) is hydrolyzed to DIMBOA, which spontaneously decomposes into 6-MBOA. It is commonly detected in plants consumed by voles and livestock and can also be present in cereal-based products. Discovered in 1955, this compound is renowned for its ability to trigger animal reproduction. However, there is a lack of research on its functional and mechanistic properties, leaving much of their potential unexplored. This review aimed to comprehensively summarize the effects of 6-MBOA on animal reproduction and human health, as well as its defensive role against herbivores. Studies have shown that 6-MBOA effectively inhibits the digestion, development, growth, and reproduction of insects. 6-MBOA may act as a partial agonist of melatonin and exert a regulatory role in mammalian reproduction, resulting in either promoting or inhibiting effects. 6-MBOA has been theorized to possess anti-tumor, anti-AIDS, anti-anxiety, and weight-loss effects in humans. However, insufficient attention has been paid to its defense properties against mammalian herbivores, and the mechanisms underlying its effects on mammalian reproduction remain unclear. In addition, research on its impact on human health is still in its preliminary stages. The review emphasizes the need for further systematic and comprehensive research on 6-MBOA to fully understand its diverse functions. Elucidating the effects of 6-MBOA on animal reproduction, adaptation, and human health would advance our understanding of plant-herbivore coevolution and the influence of environmental factors on animal population dynamics. Furthermore, this knowledge could potentially promote its application in human health and animal husbandry.


Assuntos
Reprodução , Animais , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Humanos , Benzoxazóis
5.
J Colloid Interface Sci ; 671: 751-769, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38824748

RESUMO

Chemotherapy and surgery stand as primary cancer treatments, yet the unique traits of the tumor microenvironment hinder their effectiveness. The natural compound epigallocatechin gallate (EGCG) possesses potent anti-tumor and antibacterial traits. However, the tumor's adaptability to chemotherapy due to its acidic pH and elevated glutathione (GSH) levels, coupled with the challenges posed by drug-resistant bacterial infections post-surgery, impede treatment outcomes. To address these challenges, researchers strive to explore innovative treatment strategies, such as multimodal combination therapy. This study successfully synthesized Cu-EGCG, a metal-polyphenol network, and detailly characterized it by using synchrotron radiation and high-resolution mass spectrometry (HRMS). Through chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT), Cu-EGCG showed robust antitumor and antibacterial effects. Cu+ in Cu-EGCG actively participates in a Fenton-like reaction, generating hydroxyl radicals (·OH) upon exposure to hydrogen peroxide (H2O2) and converting to Cu2+. This Cu2+ interacts with GSH, weakening the oxidative stress response of bacteria and tumor cells. Density functional theory (DFT) calculations verified Cu-EGCG's efficient GSH consumption during its reaction with GSH. Additionally, Cu-EGCG exhibited outstanding photothermal conversion when exposed to 808 nm near-infrared (NIR) radiation and produced singlet oxygen (1O2) upon laser irradiation. In both mouse tumor and wound models, Cu-EGCG showcased remarkable antitumor and antibacterial properties.


Assuntos
Antibacterianos , Antineoplásicos , Catequina , Cobre , Nanocompostos , Antibacterianos/farmacologia , Antibacterianos/química , Cobre/química , Cobre/farmacologia , Nanocompostos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Camundongos , Humanos , Catequina/química , Catequina/farmacologia , Catequina/análogos & derivados , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/efeitos dos fármacos , Fotoquimioterapia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/patologia , Infecção dos Ferimentos/microbiologia , Ensaios de Seleção de Medicamentos Antitumorais , Staphylococcus aureus/efeitos dos fármacos , Terapia Fototérmica , Tamanho da Partícula , Escherichia coli/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos
6.
Am J Cancer Res ; 14(5): 2343-2370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859828

RESUMO

To assess the role of ANOS1 in esophageal cancer (ESCA) progression, multi-omic analysis and experimental validation were employed. It was revealed that ANOS1 expression is significantly enhanced in ESCA patients and cell lines. The expression level of ANOS1 in ESCA patients can distinguish the malignancy from normal tissue with an area under curve (AUC) >0.75. Moreover, increased expression of ANOS1 is associated with advanced T stage and worse disease-free survival of ESCA patients. Therefore, a clinically applicable nomogram with ANOS1 was established with strong predictive power. Furthermore, high expression of ANOS1 in ESCA is correlated with (i) the enrichment of epithelial-mesenchymal transition by gene set enrichment analysis, (ii) the involvement in hypoxia, angiogenesis, WNT signaling pathway, and TGFß signaling pathway by gene set variation analysis, (iii) the presence of the small insertion and deletion mutational signature ID9, associated with chromothripsis, in the single-nucleotide polymorphism analysis, (iv) the amplification of 11q13.3 in the copy number variants analysis, (v) the enrichment of cancer-associated fibroblasts and mesenchymal stromal cells in the tumor microenvironment. All the results from multi-omic analysis indicate that ANOS1 plays a pivotal role in accelerating the progression of ESCA. Results from in vivo and in vitro experiments show that the knockdown of ANOS1 hampers the proliferation of ESCA cells, further validating the oncogenic role of ANOS1 in ESCA. Additionally, potential chemotherapeutics with sensitivity were identified in the high-ANOS1 group. In conclusion, ANOS1 accelerates the progression of ESCA.

7.
World J Oncol ; 15(3): 482-491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751703

RESUMO

Background: Peripheral traditional immune cell disorder plays an important role in cancer onset and development. The causal relationships between leukocytes prior to cancer and the risk of digestive system cancer remain unknown. This study assesses the causal correlations between leukocytes and digestive system cancer risk in East Asians and Europeans. Methods: Summary-level data on leukocyte-related genetic variation were extracted from Biobank Japan (107,964 participants) and a recent large-scale meta-analysis (563,946 participants). Summary-level data for the cancers were obtained from Biobank Japan (212,978 individuals) and the FinnGen consortium (178,802 participants). Univariable and multivariable Mendelian randomization (MR) analyses were performed on East Asians and Europeans separately. Results: Univariable MR analysis demonstrated the significant association between circulating eosinophil counts and risk of colorectal cancer (CRC) in East Asians (odds ratio (OR) = 0.80, 95% confidence interval (CI): 0.69 - 0.92, P = 0.002) and a suggestive relationship in the European population (OR = 0.86, 95% CI: 0.77 - 0.97, P = 0.013). An inverse suggestive association was observed between levels of basophils and the risk of gastric cancer (GC) in East Asians (OR = 0.83, 95% CI: 0.72 - 0.97, P = 0.019). The multivariable MR analysis showed the independent causal effect of eosinophil count on CRC risk in East Asians (OR = 0.72, 95% CI: 0.57 - 0.92, P = 0.009) and Europeans (OR = 0.80, 95% CI: 0.70 - 0.92, P = 0.002). Circulating basophils served as the negative causal factor in GC risk in East Asians (OR = 0.80, 95% CI: 0.67 - 0.94, P = 0.007). Conclusions: Our MR analyses revealed a genetic causal relationship between reduced blood eosinophils and an increased CRC risk in both Europeans and East Asians. Furthermore, our results suggested a causal association between decreased basophils and an elevated GC risk specifically in East Asians.

8.
Biomarkers ; 29(5): 255-264, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38767430

RESUMO

OBJECTIVE: This investigation aimed to develop and validate a novel oxidative stress score for prognostic prediction in locally advanced cervical cancer (LACC) patients receiving chemoradiotherapy. METHODS: A total of 301 LACC patients were enrolled and randomly divided into a training and a validation set. The association between oxidative stress parameters and prognosis was analyzed for oxidative stress score (OSS) establishment. A Cox regression model was conducted for overall survival (OS) and progression-free survival (PFS). A nomogram prediction model was developed using independent prognostic factors from the training set and validated in the validation set. RESULTS: A novel OSS was established with four oxidative stress parameters, including albumin, total bilirubin, blood urea nitrogen, and lactate dehydrogenase. Multivariate regression analysis identified OSS as an independent prognostic factor for OS (p = 0.001) and PFS (p < 0.001). A predictive nomogram based on the OSS was established and validated. The C-indexes of the nomogram in the training set were 0.772 for OS and 0.781 for PFS, while in the validation set the C-indexes were 0.642 for OS and 0.621 for PFS. CONCLUSION: This study confirmed that preoperative OSS could serve as a useful independent prognostic factor in LACC patients who received CCRT.


Assuntos
Biomarcadores Tumorais , Quimiorradioterapia , Nomogramas , Estresse Oxidativo , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/sangue , Neoplasias do Colo do Útero/mortalidade , Neoplasias do Colo do Útero/patologia , Prognóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Adulto , Idoso , Bilirrubina/sangue , Nitrogênio da Ureia Sanguínea , Intervalo Livre de Progressão , L-Lactato Desidrogenase/sangue , Modelos de Riscos Proporcionais
9.
J Radiat Res ; 65(2): 215-222, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38331401

RESUMO

Several materials are utilized in the production of bolus, which is essential for superficial tumor radiotherapy. This research aimed to compare the variations in dose deposition in deep tissues during electron beam radiotherapy when employing different bolus materials. Specifically, the study developed general superficial tumor models (S-T models) and postoperative breast cancer models (P-B models). Each model comprised a bolus made of water, polylactic acid (PLA), polystyrene, silica-gel or glycerol. Geant4 was employed to simulate the transportation of electron beams within the studied models, enabling the acquisition of dose distributions along the central axis of the field. A comparison was conducted to assess the dose distributions in deep tissues. In regions where the percentage depth dose (PDD) decreases rapidly, the relative doses (RDs) in the S-T models with silica-gel bolus exhibited the highest values. Subsequently, RDs for PLA, glycerol and polystyrene boluses followed in descending order. Notably, the RDs for glycerol and polystyrene boluses were consistently below 1. Within the P-B models, RDs for all four bolus materials are consistently below 1. Among them, the smallest RDs are observed with the glycerol bolus, followed by silica-gel, PLA and polystyrene bolus in ascending order. As PDDs are ~1-3% or smaller, the differences in RDs diminish rapidly until are only around 10%. For the S-T and P-B models, polystyrene and glycerol are the most suitable bolus materials, respectively. The choice of appropriate bolus materials, tailored to the specific treatment scenario, holds significant importance in safeguarding deep tissues during radiotherapy.


Assuntos
Elétrons , Neoplasias , Humanos , Dosagem Radioterapêutica , Poliestirenos , Glicerol , Planejamento da Radioterapia Assistida por Computador , Poliésteres , Dióxido de Silício , Método de Monte Carlo , Imagens de Fantasmas
10.
Sci Rep ; 14(1): 3901, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365809

RESUMO

Disulfidptosis is a condition where dysregulated NAPDH levels and abnormal accumulation of cystine and other disulfides occur in cells with high SLC7A11 expression under glucose deficiency. This disrupts normal formation of disulfide bonds among cytoskeletal proteins, leading to histone skeleton collapse and triggering cellular apoptosis. However, the correlation between disulfidptosis and immune responses in relation to glioblastoma survival rates and immunotherapy sensitivity remains understudied. Therefore, we utilized The Cancer Genome Atlas and The Chinese Glioma Genome Atlas to identify disulfidptosis-related immune checkpoint genes and established an overall survival (OS) prediction model comprising six genes: CD276, TNFRSF 14, TNFSF14, TNFSF4, CD40, and TNFRSF18, which could also be used for predicting immunotherapy sensitivity. We identified a cohort of glioblastoma patients classified as high-risk, which exhibited an upregulation of angiogenesis, extracellular matrix remodeling, and epithelial-mesenchymal transition as well as an immunosuppressive tumor microenvironment (TME) enriched with tumor associated macrophages, tumor associated neutrophils, CD8 + T-cell exhaustion. Immunohistochemical staining of CD276 in 144 cases further validated its negative correlation with OS in glioma. Disulfidptosis has the potential to induce chronic inflammation and an immunosuppressive TME in glioblastoma.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Microambiente Tumoral/genética , Prognóstico , Fatores de Transcrição , Apoptose , Ligante OX40 , Antígenos B7
11.
Life Sci Space Res (Amst) ; 40: 81-88, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245352

RESUMO

Ionizing radiation poses significant risks to astronauts during deep space exploration. This study investigates the impact of radiation on nucleophosmin (NPM), a protein involved in DNA repair, cell cycle regulation, and proliferation. Using X-rays, a common space radiation, we found that radiation suppresses NPM expression. Knockdown of NPM increases DNA damage after irradiation, disrupts cell cycle distribution and enhances cellular radiosensitivity. Additionally, NPM interacts with globular actin (G-actin), affecting its translocation and centrosome binding during mitosis. These findings provide insights into the role of NPM in cellular processes in responding to radiation. This article enhances our comprehension of radiation-induced genomic instability and provides a foundational platform for prospective investigations within the realm of space radiation and its implications for cancer therapy.


Assuntos
Actinas , Nucleofosmina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Raios X , Estudos Prospectivos
12.
Front Pharmacol ; 15: 1290120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292937

RESUMO

Ferroptosis, distinct from apoptosis, is a novel cellular death pathway characterized by the build-up of lipid peroxidation and reactive oxygen species (ROS) derived from lipids within cells. Recent studies demonstrated the efficacy of ferroptosis inducers in targeting malignant cells, thereby establishing a promising avenue for combating cancer. Traditional Chinese medicine (TCM) has a long history of use and is widely used in cancer treatment. TCM takes a holistic approach, viewing the patient as a system and utilizing herbal formulas to address complex diseases such as cancer. Recent TCM studies have elucidated the molecular mechanisms underlying ferroptosis induction during cancer treatment. These studies have identified numerous plant metabolites and derivatives that target multiple pathways and molecular targets. TCM can induce ferroptosis in tumor cells through various regulatory mechanisms, such as amino acid, iron, and lipid metabolism pathways, which may provide novel therapeutic strategies for apoptosis-resistant cancer treatment. TCM also influence anticancer immunotherapy via ferroptosis. This review comprehensively elucidates the molecular mechanisms underlying ferroptosis, highlights the pivotal regulatory genes involved in orchestrating this process, evaluates the advancements made in TCM research pertaining to ferroptosis, and provides theoretical insights into the induction of ferroptosis in tumors using botanical drugs.

13.
Int J Biochem Cell Biol ; 166: 106506, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101533

RESUMO

BACKGROUND: Pyrroline-5-carboxylate reductase 2 (PYCR2) expression is aberrantly upregulated in colon cancer. However, the functions and underlying mechanisms of PYCR2 in breast cancer remain elusive. The primary objective of the present study was to elucidate the function of PYCR2 in breast cancer and investigate whether PYCR2 may be transcriptionally regulated by c-Myc to activate the AKT signaling pathway. METHODS: Immunohistochemical analysis was performed to examine the expression of PYCR2 in breast cancer and adjacent non-cancerous tissues. Western blot and RT-qPCR were utilized to detect PYCR2 expression in breast cancer cells. Cellular functionalities were evaluated through Transwell assays in vitro and lung metastasis formation assays in vivo. Moreover, the impact of PYCR2 on the activation of AKT signaling was determined through western blot and immunohistochemistry analysis. The transcriptional regulation of PYCR2 expression by c-Myc was evaluated via both western blot analysis and luciferase gene reporter assay. RESULTS: PYCR2 overexpression was noted in breast cancer. Silencing PYCR2 expression attenuated the invasive and metastatic abilities of breast cancer cells. Furthermore, the activation of the AKT signaling pathway is indispensable for the promotion of invasion and metastasis mediated by PYCR2. Lastly, the binding of c-Myc to the promoter sequence of PYCR2 resulted in the upregulation of PYCR2 transcription. CONCLUSION: Taken together, these results indicate that PYCR2 is transcriptionally regulated by c-Myc and promotes invasion and metastasis in breast cancer through the activation of the AKT pathway.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Mama/patologia , Transdução de Sinais , Regulação para Cima , Linhagem Celular Tumoral , Invasividade Neoplásica/genética , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , delta-1-Pirrolina-5-Carboxilato Redutase , Pirrolina Carboxilato Redutases/genética , Pirrolina Carboxilato Redutases/metabolismo
14.
World J Gastrointest Surg ; 15(11): 2482-2489, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38111757

RESUMO

BACKGROUND: Obesity is associated with an increased risk of multiple extradigestive complications. Thus, understanding the global epidemiology of obesity and its relationship with extradigestive complications, such as cardiovascular disease, type 2 diabetes mellitus, and non-alcoholic fatty liver disease is important. However, nutritional intervention can positively manage issues associated with obesity. Hence, the identification of the current high prevalence of extradigestive complications among patients with obesity and the potential role of nutritional interventions is also essential. AIM: To determine the relationship between obesity and extradigestive complications and emphasize the importance of nutritional interventions in the management of patients with obesity. METHODS: Overall, 110 patients with obesity admitted to our hospital from February 2020 to November 2022 and 100 healthy individuals were included in the present study. Information of the study population, including demographic characteristics, such as age, sex, body mass index, indicators of extradigestive complications, dietary intake, and biomarkers was collected. The study design, participant selection, interventions, and development of the nutritional intervention program were described. The collected data were analyzed to assess the effect of nutritional interventions on extradigestive complications. RESULTS: As a part of nutritional intervention, the dietary structure was modified to decrease the saturated fatty acid and cholesterol intake and increase the dietary fiber and polyunsaturated fatty acid intake to improve the blood lipid levels and cardiovascular health. Mechanistic studies showed that these nutritional interventions positively affected mechanisms that regulate lipid metabolism, improved inflammatory markers in the blood, and improved vascular functions. CONCLUSION: The study discusses the consistency of the present results with previous findings to assess the clinical significance of the present findings. The study provides direction for future research on improving nutritional intervention strategies.

15.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 132-140, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38015530

RESUMO

Cervical cancer (CC) is the fourth most common cancer amongst females worldwide. Histone deacetylase (HDAC) 1 plays a vital role in several tumors. Nevertheless, its potential and mechanism in radiotherapy sensitivity underlying CC remains obscure. Hence, the objective of this research was to probe the potential of HDAC1 in CC radiotherapy sensitivity and its mechanism of action. The expression HDACs and survival analysis of HDAC1 were investigated based on the GEPIA database. Immunohistochemical staining was implemented to detect HDAC1 and Ki-67 expression in tumor tissues. RT-qPCR and Western blot were conducted to assess HDAC1, HIF-1α, VEGFA, along with VEGFR expressions in CC cells and tumor tissues. Cell viability, apoptosis, invasion, migration, along with cell cycle were analyzed by functional assays. Tumor-bearing nude mice model was established, and the tumor weight and volume were determined. HDAC1 was high-expressed in the tumor tissue and CC cells. In vitro, overexpression of HDAC1 suppressed radiotherapy sensitivity in C33A cells, while knockdown of HDAC1 promoted radiotherapy sensitivity in SiHa cells. In vivo, we found that HDAC1 silence hindered tumor growth and cell proliferation and promoted tumor cell apoptosis in nude mice after radiotherapy. In addition, we found that HDAC1 impacted radiotherapy sensitivity by modulating the HIF-1α/VEGF signaling pathway. In conclusion, HDAC1 suppressed the radiotherapy sensitivity of CC via regulating HIF-1α/VEGF signaling pathway, suggesting that HDAC1 may act as a crucial participant in regulating CC radiosensitivity, which may provide a novel method for treating CC.


Assuntos
Histona Desacetilase 1 , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Apoptose/genética , Histona Desacetilase 1/genética , Camundongos Nus , Transdução de Sinais , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia , Fator A de Crescimento do Endotélio Vascular/genética , Tolerância a Radiação/genética
16.
Front Endocrinol (Lausanne) ; 14: 1250410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664856

RESUMO

Background: Diabetes mellitus (DM) is a prominent health concern worldwide, leading to the high incidence of disability and mortality and bringing in heavy healthcare and social burden. Plant-based diets are reported associated with a reduction of DM risk. Plant-based diets are rich in flavonoids, which possess properties such as scavenging free radicals and exerting both anti-inflammatory and antioxidant effects. Purpose: However, whether dietary flavonoids are associated with the prevalence of DM remains controversial. The potential reasons for contradictory epidemiological outcomes on the association between dietary flavonoids and DM prevalence have not been determined. Methods: To address these limitations, we employed data from 22,481 participants in the National Health and Nutrition Examination Survey to explore the association between the intake of flavonoids and DM prevalence by weighted Logistic regression and weighted restricted cubic splines. Results: We found that the prevalence of DM was inversely associated with the intake of total flavonoids in the second quartile [Odds Ratio (OR) 0.78 95% confidence interval (CI) (0.63, 0.97), p = 0.028], in the third quartile [0.76 (0.60, 0.97), p = 0.031], and in the fourth quartile [0.80 (0.65, 0.97), p = 0.027]. However, the p for trend was not significant [0.94 (0.88, 1.01), p = 0.096]. Moreover, the association between DM prevalence and the intake of total flavonoids was significantly influenced by race (p for interaction = 0.006). In Mexican Americans, there was a significant positive association between DM prevalence and total flavonoid intake within the third quartile [1.04 (1.02, 1.07), p = 0.003]. Total flavan-3-ol and subtotal catechin intake exhibited a non-linear U-shaped association with DM prevalence (p for non-linearity < 0.0001 and p for non-linearity < 0.0001, respectively). Compared to the first quartile of corresponding intakes, consumption within the third quartile of subtotal catechins [0.70 (0.55, 0.89), p = 0.005] and total flavan-3-ols [0.65 (0.50, 0.84), p = 0.002] was associated with a lower prevalence of DM. Conclusion: Taken together, our study may provide preliminary research evidence for personalized improvement of dietary habits to reduce the prevalence of diabetes.


Assuntos
Diabetes Mellitus , Flavonoides , Humanos , Inquéritos Nutricionais , Prevalência , Polifenóis , Diabetes Mellitus/epidemiologia
17.
Sci Total Environ ; 905: 167043, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37717771

RESUMO

BACKGROUND: Iron plays a pivotal role in various physiological processes, including intestinal inflammation, ferroptosis, and the modulation of the gut microbiome. However, the way these factors interact with each other is unclear. METHODS: Mice models were fed with low, normal and high iron diets to assess their impacts on colitis, ferroptosis and gut microbiota. Untargeted fecal metabolomics analysis, 16S rRNA sequencing, histopathology analysis, real-time quantitative PCR and western blot were performed to analyze the differences in the intestinal inflammatory response and understanding its regulatory mechanisms between low, normal and high iron groups. RESULTS: The iron overload changed the serum iron, colon iron and fecal iron. In addition, the iron overload induced the colitis, induced the ferroptosis and altered the microbiome composition in the fecal of mice. By using untargeted fecal metabolomics analysis to screen of metabolites in the fecal, we found that different metabolomics profiles in the fecal samples between iron deficiency, normal iron and iron overload groups. The correlation analysis showed that both of iron deficiency and overload were closely related to Dubosiella. The relationship between microbial communities (e.g., Akkermansia, Alistipes, and Dubosiella) and colitis-related parameters was highly significant. Additionally, Alistipes and Bacteroides microbial communities displayed a close association with ferroptosis-related parameters. Iron overload reduced the concentration of metabolites, which exert the anti-inflammatory effects (e.g., (+)-.alpha.-tocopherol) in mice. The nucleotide metabolism, enzyme metabolism and metabolic diseases were decreased and the lipid metabolism was increased in iron deficiency and iron overload groups compared with normal iron group. CONCLUSION: Iron overload exacerbated colitis in mice by modulating ferroptosis and perturbing the gut microbiota. Iron overload-induced ferroptosis was associated with NRF2/GPX-4 signaling pathway. Specific microbial taxa and their associated metabolites were closely intertwined with both colitis and ferroptosis markers.


Assuntos
Colite , Ferroptose , Microbioma Gastrointestinal , Deficiências de Ferro , Sobrecarga de Ferro , Animais , Camundongos , RNA Ribossômico 16S , Colite/induzido quimicamente , Ferro , Bacteroidetes , Firmicutes , Camundongos Endogâmicos C57BL
18.
Nutrients ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111212

RESUMO

Ferroptosis, a form of regulated cell death, has been widely explored as a novel target for the treatment of diseases. The failure of the antioxidant system can induce ferroptosis. Epigallocatechin-3-Gallate (EGCG) is a natural antioxidant in tea; however, whether EGCG can regulate ferroptosis in the treatment of liver oxidative damage, as well as the exact molecular mechanism, is unknown. Here, we discovered that iron overload disturbed iron homeostasis in mice, leading to oxidative stress and damage in the liver by activating ferroptosis. However, EGCG supplementation alleviated the liver oxidative damage caused by iron overload by inhibiting ferroptosis. EGCG addition increased NRF2 and GPX4 expression and elevated antioxidant capacity in iron overload mice. EGCG administration attenuates iron metabolism disorders by upregulating FTH/L expression. Through these two mechanisms, EGCG can effectively inhibit iron overload-induced ferroptosis. Taken together, these findings suggest that EGCG is a potential ferroptosis suppressor, and may be a promising therapeutic agent for iron overload-induced liver disease.


Assuntos
Catequina , Ferroptose , Sobrecarga de Ferro , Hepatopatias , Camundongos , Animais , Antioxidantes/farmacologia , Estresse Oxidativo , Sobrecarga de Ferro/tratamento farmacológico , Catequina/farmacologia , Catequina/uso terapêutico , Hepatopatias/tratamento farmacológico
19.
J Oncol ; 2023: 6851036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936374

RESUMO

Increasing evidence suggests that diverse activation patterns of metabolic signalling pathways may lead to molecular diversity of cervical cancer (CC). But rare research focuses on the alternation of fatty acid metabolism (FAM) in CC. Therefore, we constructed and compared models based on the expression of FAM-related genes from the Cancer Genome Atlas by different machine learning algorithms. The most reliable model was built with 14 significant genes by LASSO-Cox regression, and the CC cohort was divided into low-/high-risk groups by the median of risk score. Then, a feasible nomogram was established and validated by C-index, calibration curve, net benefit, and decision curve analysis. Furthermore, the hub genes among differential expression genes were identified and the post-transcriptional and translational regulation networks were characterized. Moreover, the somatic mutation and copy number variation landscapes were depicted. Importantly, the specific mutation drivers and signatures of the FAM phenotypes were excavated. As a result, the high-risk samples were featured by activated de novo fatty acid synthesis, epithelial to mesenchymal transition, angiogenesis, and chronic inflammation response, which might be caused by mutations of oncogenic driver genes in RTK/RAS, PI3K, and NOTCH signalling pathways. Besides the hyperactivity of cytidine deaminase and deficiency of mismatch repair, the mutations of POLE might be partially responsible for the mutations in the high-risk group. Next, the antigenome including the neoantigen and cancer germline antigens was estimated. The decreasing expression of a series of cancer germline antigens was identified to be related to reduction of CD8 T cell infiltration in the high-risk group. Then, the comprehensive evaluation of connotations between the tumour microenvironment and FAM phenotypes demonstrated that the increasing risk score was related to the suppressive immune microenvironment. Finally, the prediction of therapy targets revealed that the patients with high risk might be sensitive to the RAF inhibitor AZ628. Our findings provide a novel insight for personalized treatment in CC.

20.
Food Res Int ; 166: 112597, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914323

RESUMO

The purpose of this study was to explore the effects of glutamate on piglet growth performance and intestinal immunity function, and to further elucidate its mechanism. In a 2 × 2 factorial design involving immunological challenge (lipopolysaccharide (LPS) or saline) and diet (with or without glutamate), twenty-four piglets were randomly assigned to four groups, each with 6 replicates. Piglets were fed with a basal or glutamate diet for 21 d before being injected intraperitoneally with LPS or saline. Piglet's intestinal samples were collected 4 h after injection. Results showed that glutamate increased daily feed intake, average daily gain, villus length, villus area, and villus length to crypt depth ratio (V/C), and decreased the crypt depth (P < 0.05). Furthermore, glutamate increased the mRNA expression of forkhead box P3 (FOXP3), a signal transducer and activator of transcription 5 (STAT5) and transforming growth factor beta, while decreasing the mRNA expression of RAR-related orphan receptor c and STAT3. Glutamate increased interleukin-10 (IL-10) mRNA expression while decreasing the mRNA expression of IL-1ß, IL-6, IL-8, IL-17, IL-21, and tumor necrosis factor-α. At the phylum level, glutamate increased the Actinobacteriota abundance and Firmicutes-to-Bacteroidetes ratio while decreasing Firmicutes abundance. At the genus level, glutamate improved the abundance of beneficial bacteria (e.g., Lactobacillus, Prevotellaceae-NK3B31-group, and UCG-005). Furthermore, glutamate increased the concentrations of short-chain fatty acids (SCFAs). Correlation analysis revealed that the intestinal microbiota is closely related to Th17/Treg balance-related index and SCFAs. Collectively, glutamate can improve piglet growth performance and intestinal immunity by modulating gut microbiota and Th17/Treg balance-related signaling pathways.


Assuntos
Microbioma Gastrointestinal , Lipopolissacarídeos , Animais , Suínos , Lipopolissacarídeos/farmacologia , Ácido Glutâmico , Linfócitos T Reguladores , Dieta , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA