Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cell Death Dis ; 11(4): 213, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238802

RESUMO

Nasopharyngeal carcinoma (NPC) induced by latent infection with Epstein-Barr virus (EBV) remains the most common head and neck cancer in Southeast Asia, especially in the southern part of China. It is well known that persistent expression of two EBV latent membrane proteins (LMP1/LMP2A) plays a key role in nasopharyngeal carcinogenesis. Therefore, the therapeutic approach of targeting the LMP1/LMP2A protein and subsequently blocking the LMP1/LMP2A-mediated signalling pathway has been considered for treating patients with NPC. Recently, affibody molecules, a new class of small (~6.5 kDa) affinity proteins, have been confirmed to be powerful generalisable tools for developing imaging or therapeutic agents by targeting specific molecules. In this study, three EBV LMP2A N-terminal domain-binding affibody molecules (ZLMP2A-N85, ZLMP2A-N110 and ZLMP2A-N252) were identified by screening a phage-displayed peptide library, and their high affinity and specificity for the EBV LMP2A N-terminal domain were confirmed by surface plasmon resonance (SPR), indirect immunofluorescence, co-immunoprecipitation and near-infrared small animal fluorescence imaging in vitro and in vivo. Moreover, affibody molecules targeting the EBV LMP2A N-terminal domain significantly reduced the viability of the EBV-positive cell lines C666-1, CNE-2Z and B95-8. Further investigations showed that affibody ZLMP2A-N110 could inhibit the phosphorylation of AKT, GSK-3ß and ß-catenin signalling proteins, leading to suppression of ß-catenin nuclear translocation and subsequent inhibition of c-Myc oncogene expression, which may be responsible for the reduced viability of NPC-derived cell lines. In conclusion, our findings provide a strong evidence that three novel EBV LMP2A N-terminal domain-binding affibody molecules have great potential for utilisation and development as agents for both molecular imaging and targeted therapy of EBV-related NPC.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Carcinoma Nasofaríngeo/genética , Proteínas da Matriz Viral/metabolismo , Animais , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Carcinoma Nasofaríngeo/metabolismo
3.
PLoS Pathog ; 16(1): e1008223, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905218

RESUMO

Epstein-Barr virus (EBV) infection is closely linked to several human malignancies including endemic Burkitt's lymphoma, Hodgkin's lymphoma and nasopharyngeal carcinomas (NPC). Latent membrane protein 2 (LMP-2) of EBV plays a pivotal role in pathogenesis of EBV-related tumors and thus, is a potential target for diagnosis and targeted therapy of EBV LMP-2+ malignant cancers. Affibody molecules are developing as imaging probes and tumor-targeted delivery of small molecules. In this study, four EBV LMP-2-binding affibodies (ZEBV LMP-212, ZEBV LMP-2132, ZEBV LMP-2137, and ZEBV LMP-2142) were identified by screening a phage-displayed LMP-2 peptide library for molecular imaging and targeted therapy in EBV xenograft mice model. ZEBV LMP-2 affibody has high binding affinity for EBV LMP-2 and accumulates in mouse tumor derived from EBV LMP-2+ xenografts for 24 h after intravenous (IV) injection. Subsequent fusion of Pseudomonas exotoxin PE38KDEL to the ZEBV LMP-2 142 affibody led to production of Z142X affitoxin. This fused Z142X affitoxin exhibits high cytotoxicity specific for EBV+ cells in vitro and significant antitumor effect in mice bearing EBV+ tumor xenografts by IV injection. The data provide the proof of principle that EBV LMP-2-speicifc affibody molecules are useful for molecular imaging diagnosis and have potentials for targeted therapy of LMP-2-expressing EBV malignancies.


Assuntos
Herpesvirus Humano 4 , Imunotoxinas/uso terapêutico , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/terapia , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imunotoxinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Imagem Molecular , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/virologia , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/terapia , Biblioteca de Peptídeos , Ligação Proteica , Proteínas da Matriz Viral/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA