Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 20(27): e2400064, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38530072

RESUMO

Achieving high gas selectivity is challenging when dealing with gas pairs of similar size and physiochemical properties. The "molecular trapdoor" mechanism discovered in zeolites holds promise for highly selective gas adsorption separation but faces limitations like constrained pore volume and slow adsorption kinetics. To address these challenges, for the first time, a flexible metal-organic framework (MOF) featuring 1D channels and functioning as a "molecular trapdoor" material is intoduced. Extra-framework anions act as "gate-keeping" groups at the narrowest points of channels, permitting gas admissions via gate opening induced by thermal/pressure stimuli and guest interactions. Different guest molecules induce varied energy barriers for anion movement, enabling gas separation based on distinct threshold temperatures for gas admission. The flexible framework of Pytpy MOFs, featuring swelling structure with rotatable pyridine rings, facilitates faster gas adsorption than zeolite. Analyzing anion properties of Pytpy MOFs reveals a guiding principle for selecting anions to tailor threshold gas admission. This study not only overcomes the kinetic limitations related to gas admission in the "molecular trapdoor" zeolites but also underscores the potential of developing MOFs as molecular trapdoor adsorbents, providing valuable insights for designing ionic MOFs tailored to diverse gas separation applications.

2.
Angew Chem Int Ed Engl ; 61(39): e202208534, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35927219

RESUMO

To mitigate flooding associated with the gas diffusion layer (GDL) during electroreduction of CO2 , we report a hydrophobicity-graded hydrophobic GDL (HGGDL). Coating uniformly dispersed polytetrafluoroethylene (PTFE) binders on the carbon fiber skeleton of a hydrophilic GDL uniformizes the hydrophobicity of the GDL and also alleviates the gas blockage of pore channels. Further adherence of the PTFE macroporous layer (PMPL) to one side of the hydrophobic carbon fiber skeleton was aided by sintering. The introduced PMPL shows an appropriate pore size and enhanced hydrophobicity. As a result, the HGGDL offers spatial control of the hydrophobicity and hence water and gas transport over the GDL. Using a nickel-single-atom catalyst, the resulting HGGDL electrode provided a CO faradaic efficiency of over 83 % at a constant current density of 75 mA cm-2 for 103 h operation in a membrane electrode assembly, which is more than 16 times that achieved with a commercial GDL.

3.
ACS Nano ; 15(6): 9670-9678, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34024096

RESUMO

The rational design of photocatalysts for efficient nitrogen (N2) fixation at ambient conditions is important for revolutionizing ammonia production and quite challenging because the great difficulty lies in the adsorption and activation of the inert N2. Inspired by a biological molecule, chlorophyll, featuring a porphyrin structure as the photosensitizer and enzyme nitrogenase featuring an iron (Fe) atom as a favorable binding site for N2via π-backbonding, here we developed a porphyrin-based metal-organic framework (PMOF) with Fe as the active center as an artificial photocatalyst for N2 reduction reaction (NRR) under ambient conditions. The PMOF features aluminum (Al) as metal node imparting high stability and Fe incorporated and atomically dispersed by residing at each porphyrin ring promoting the adsorption and the activation of N2, termed Al-PMOF(Fe). Compared with the pristine Al-PMOF, Al-PMOF(Fe) exhibits a substantial enhancement in NH3 yield (635 µg g-1cat.) and production rate (127 µg h-1 g-1cat.) of 82% and 50%, respectively, on par with the best-performing MOF-based NRR catalysts. Three cycles of photocatalytic NRR experimental results corroborate a stable photocatalytic activity of Al-PMOF(Fe). The combined experimental and theoretical results reveal that the Fe-N site in Al-PMOF(Fe) is the active photocatalytic center that can mitigate the difficulty of the rate-determining step in photocatalytic NRR. The possible reaction pathways of NRR on Al-PMOF(Fe) were established. Our study of porphyrin-based MOF for the photocatalytic NRR will provide insight into the rational design of catalysts for artificial photosynthesis.


Assuntos
Estruturas Metalorgânicas , Porfirinas , Ferro , Fixação de Nitrogênio , Oxirredução
4.
Chem Commun (Camb) ; 57(2): 187-190, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33313631

RESUMO

A linker molecule with four pendant thiophene functions was crystallized with Zr(iv) ions to form a semiconductive porous coordination solid (1.1 × 10-5 S cm-1). Oxidative treatment with FeCl3 guests then coupled the thiophene units to form conjugated bridges as covalent crosslinks. The resulting hybrid of a metal-organic framework and conjugated polymer featured robust crystalline order that withstood long-term air exposure and broad pH (from 0 to 12) conditions. Moreover, the homocoupled thiophene units, conjugated through sulfide links (-S-) with the linker backbone, afforded higher electronic conductivity (e.g., >2.2 × 10-3 S cm-1), which is characteristic of conductive polymer prototypes of polythiophene and polyphenylene sulfide. The crosslinked solid also exhibited proton conductivity that could be increased broadly upon H2SO4 treatment (e.g., from 5.0 × 10-7 to 1.6 × 10-3 S cm-1).

5.
Chem Sci ; 11(26): 6670-6681, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34094125

RESUMO

The development of wide-spectrum responsive photocatalysts for efficient formaldehyde (HCHO) removal is highly desired yet remains a great challenge. Here we successfully converted zeolitic imidazolate framework-8 (ZIF-8), one of the most well-studied metal-organic frameworks (MOFs), from routine ultraviolet-driven to novel broad-spectrum-driven photocatalyst via a facile thermal treatment. The isocyanate groups (-N[double bond, length as m-dash]C[double bond, length as m-dash]O) formed in the thermally treated ZIF-8 (ZIF-8-T) is crucial in enabling the superior photocatalytic performance in formaldehyde degradation. Specifically, the best-performing ZIF-8-T sample showed around 2.1 and 9.4 times the HCHO adsorption amount and the solar photocatalytic degradation rate, respectively, of pristine ZIF-8. In addition, ZIF-8-T exhibited visible light (λ ≥ 400 nm) photocatalytic HCHO degradation performance, photo-converting 72% and nearly 100% of 20 ppm and 10 ppm HCHO within 1 hour, respectively. This work affords new insights and knowledge that inspire and inform the design and development of MOF-based photocatalysts with broad-spectrum responses for efficient air purification operations.

6.
Nat Commun ; 10(1): 4793, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641115

RESUMO

Polysulfide dissolution and slow electrochemical kinetics of conversion reactions lead to low utilization of sulfur cathodes that inhibits further development of room-temperature sodium-sulfur batteries. Here we report a multifunctional sulfur host, NiS2 nanocrystals implanted in nitrogen-doped porous carbon nanotubes, which is rationally designed to achieve high polysulfide immobilization and conversion. Attributable to the synergetic effect of physical confinement and chemical bonding, the high electronic conductivity of the matrix, closed porous structure, and polarized additives of the multifunctional sulfur host effectively immobilize polysulfides. Significantly, the electrocatalytic behaviors of the Lewis base matrix and the NiS2 component are clearly evidenced by operando synchrotron X-ray diffraction and density functional theory with strong adsorption of polysulfides and high conversion of soluble polysulfides into insoluble Na2S2/Na2S. Thus, the as-obtained sulfur cathodes exhibit excellent performance in room-temperature Na/S batteries.

7.
Chemistry ; 25(53): 12281-12287, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31292996

RESUMO

The conversion of renewable plant polyphenol to advanced materials with tailorable properties and various functions is desirable and challenging. In this work, monovalent cation-phenolic crystals contained K+ or Na+ ions were synthesized by using plant polyphenol as an organic source in alkaline solution. The crystal structure was resolved, showing a laminar crystal structure with M+ as connecting nodes. The morphologies (e.g., rod-like and spindle-shaped) and chemical compositions of crystals could be tuned by changing the cations. Interestingly, these polymer crystals exhibited a pH-driven reversible crystal transformation. They transformed into their protonated crystalline form under acidic conditions (e.g., pH 2) and went back to the cation-bound crystalline form in alkaline solutions. Furthermore, the crystals proved excellent antioxidants and heavy metal ion adsorbents.

8.
ACS Appl Mater Interfaces ; 11(33): 30234-30239, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31339300

RESUMO

We reported a new polymorphous core-shell metal-organic framework (MOF) in the form of a three-dimensional MOF core wrapped in a two-dimensional layered MOF shell by applying a general acid-solvent synergy synthesis. This hybrid material can achieve high adsorptive selectivity/capacity simultaneously, which is validated by the unary isotherms of CO2 and N2 conducted at 273 K (0-1 bar). The MOF-S@MOF-C with a 7-day exchange showed the highest CO2/N2 selectivity (32.7) among our samples and a moderate CO2 capacity (2.3 mmol/g), which are 3 times and 1.6 times those of the MOF-C and MOF-S, respectively. We attributed the enhanced selective adsorption performance to the negligible N2 uptake exhibited by the outer shell of MOF-S@MOF-C. This study provides a new route for elevating gas separation performance by constructing multifunctional core-shell materials.

9.
Angew Chem Int Ed Engl ; 55(40): 12470-4, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27581166

RESUMO

Cobalt (or iron)-polyphenol coordination polymers with crystalline frameworks are synthesized for the first time. The crystalline framework is formed by the assembly of metal ions and polyphenol followed by oxidative self-polymerization of the organic ligands (polyphenol) during hydrothermal treatment in alkaline condition. As a result, such coordination crystals are even partly stable in strong acid (such as 2 m HCl). The metal (Co or Fe)-natural abundant polyphenol (tannin) coordination crystals are a renewable source for the fabrication of metal/carbon composites as a nonprecious-metal catalyst, which show high catalytic performance for both oxygen reduction reaction and oxygen evolution reaction. Such excellent performance makes metal-polyphenol coordination crystals an efficient precursor to fabricate low-cost catalysts for the large-scale application of fuel cells and metal-air batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA