Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Insect Physiol ; 149: 104548, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481120

RESUMO

In the present study, we investigated downstream pathways of cyclic adenosine monophosphate (cAMP) signaling (which is related to prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis) in Bombyx mori prothoracic glands (PGs). Results showed that treatment with either dibutyryl cAMP (dbcAMP) or 1-methyl-3-isobutylxanthine (MIX) inhibited phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) and activated phosphorylation of the translational repressor, 4E-binding protein (4E-BP), a marker of target of rapamycin (TOR) signaling. A chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside, AICAR) increased dbcAMP-inhibited AMPK phosphorylation and blocked dbcAMP-stimulated phosphorylation of 4E-BP, indicating that inhibition of AMPK phosphorylation lies upstream of dbcAMP-stimulated TOR signaling. Treatment of PGs with dbcAMP and MIX also stimulated phosphorylation of a 37-kDa protein, as recognized by a protein kinase C (PKC) substrate antibody, indicating that cAMP activates PKC signaling. Treatment with either LY294002 or AICAR did not affect dbcAMP-stimulated phosphorylation of the PKC-dependent 37-kDa protein, indicating that cAMP-stimulated PKC signaling is not related to phosphoinositide 3-kinase (PI3K) or AMPK. In addition, dbcAMP-stimulated ecdysteroidogenesis in PGs was partially inhibited by pretreatment with either LY294002, AICAR, or calphostin C. From these results, we concluded that AMPK/TOR/4E-BP and PKC pathways are involved in ecdysteroidogenesis of PGs stimulated by cAMP signaling in B. mori.


Assuntos
Bombyx , Hormônios de Inseto , Animais , Bombyx/metabolismo , Ecdisteroides/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Bucladesina/metabolismo , Larva/fisiologia , Hormônios de Inseto/metabolismo , Fosforilação , Proteína Quinase C/metabolismo
2.
J Insect Physiol ; 116: 32-40, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022386

RESUMO

Our previous study showed that phosphorylation of glycogen synthase kinase (GSK)-3ß is related to the embryonic diapause process in Bombyx. However, the upstream signaling pathway was not clearly understood. In the present study, we examined bombyxin/Akt signaling in relation to the embryonic diapause process of B. mori. Results showed that GSK-3ß phosphorylation stimulated by dechorionation was blocked by LY294002, a specific phosphatidylinositol 3-kinase (PI3K) inhibitor, indicating involvement of PI3K in GSK-3ß phosphorylation in dechorionated eggs. Direct determination of Akt phosphorylation showed that dechorionation stimulated Akt phosphorylation. The Akt phosphorylation was blocked by LY294002. Temporal changes in Akt phosphorylation showed that different changing patterns exist between diapause and developing eggs. Relatively higher phosphorylation levels of Akt were detected between days 3 and 5 after oviposition in non-diapause eggs compared to those at the same stages in diapause eggs. Upon treatment with HCl, which prevents diapause initiation, Akt phosphorylation levels exhibited a later and much broader peak compared to diapause eggs. Examination of expression levels of the bombyxin-Z1 gene showed that in diapause eggs, a major peak occurred 1 day after oviposition, and its level then sharply decreased on day 2. However, in both non-diapause and HCl-treated eggs, a major broad peak was detected between days 1 and 4 after oviposition. These temporal changes in bombyxin-Z1 gene expression levels during embryonic stages coincided with changes in Akt phosphorylation, indicating that bombyxin-Z1 is likely an upstream signaling component for Akt phosphorylation. Taken together, our results indicated that PI3K/Akt is an upstream signaling pathway for GSK-3ß phosphorylation and is associated with the diapause process of B. mori eggs. To our knowledge, this is the first study to demonstrate the potential correlation between bombyxin/Akt signaling and the embryonic diapause process.


Assuntos
Bombyx/fisiologia , Diapausa de Inseto/fisiologia , Embrião não Mamífero/fisiologia , Proteínas de Insetos/genética , Transdução de Sinais , Animais , Bombyx/embriologia , Bombyx/genética , Proteínas de Insetos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Gen Comp Endocrinol ; 274: 97-105, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668972

RESUMO

In the present study, the roles of a major serine/threonine protein phosphatase 2A (PP2A) in prothoracicotropic hormone (PTTH)-stimulated prothoracic glands (PGs) of Bombyx mori were evaluated. Immunoblotting analysis showed that Bombyx PGs contained a structural A subunit (A), a regulatory B subunit (B), and a catalytic C subunit (C), with each subunit undergoing development-specific changes. The protein levels of each subunit were not affected by PTTH treatment. However, the highly conserved tyrosine dephosphorylation of PP2A C subunit (PP2Ac), which appears to be related to activity, was increased by PTTH treatment in a time-dependent manner. We further demonstrated that phospholipase C (PLC), Ca2+, and reactive oxygen species (ROS) are upstream signaling for the PTTH-stimulated dephosphorylation of PP2Ac. The determination of PP2A enzymatic activity showed that PP2A enzymatic activity was stimulated by PTTH treatment both in vitro and in vivo. Okadaic acid (OA), a specific PP2A inhibitor, prevented the PTTH-stimulated dephosphorylation of PP2Ac and reduced both basal and PTTH-stimulated PP2A enzymatic activity. The determination of ecdysteroid secretion showed that treatment with OA did not affect basal ecdysteroid secretion but did significantly inhibit PTTH-stimulated ecdysteroid secretion, indicating that PTTH-stimulated PP2A activity is involved in ecdysteroidogenesis. Treatment with OA stimulated the basal phosphorylation of the extracellular signal-regulated kinase (ERK) and 4E-binding protein (4E-BP) without affecting PTTH-stimulated ERK and 4E-BP phosphorylation. From these results, we hypothesize that PTTH-regulated PP2A signaling is a necessary component for the stimulation of ecdysteroidogenesis, potentially by mediating the link between ERK and TOR signaling pathways.


Assuntos
Estruturas Animais/metabolismo , Bombyx/enzimologia , Hormônios de Inseto/farmacologia , Proteína Fosfatase 2/metabolismo , Acetilcisteína/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Estruturas Animais/efeitos dos fármacos , Animais , Bombyx/efeitos dos fármacos , Cálcio/farmacologia , Ecdisteroides/farmacologia , Estrenos/farmacologia , Fatores de Iniciação em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Subunidades Proteicas/metabolismo , Pirrolidinonas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleotídeos/farmacologia , Transdução de Sinais
4.
J Insect Physiol ; 96: 1-8, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27751888

RESUMO

Our previous studies showed that adenosine 5'-monophosphate-activated protein kinase (AMPK)/the target of rapamycin (TOR) signaling is involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in Bombyx mori prothoracic glands (PGs). In the present study, we further investigated the signaling involved in PTTH-stimulated phosphorylation of 4E-BP. We found that 4E-BP phosphorylation stimulated by PTTH was partially reduced in Ca2+-free medium, indicating the involvement of Ca2+. In addition, we found that a potent and specific inhibitor of phospholipase C (PLC), U73122, greatly inhibited 4E-BP phosphorylation. However, PTTH-stimulated 4E-BP phosphorylation was not attenuated by a protein kinase C (PKC) inhibitor (chelerythrine C). These results indicate that PLC, but not PKC, is involved in PTTH-stimulated 4E-BP phosphorylation. When PGs were treated with agents that directly elevate the intracellular Ca2+ concentration (either A23187 or thapsigargin), a great increase in 4E-BP phosphorylation was observed. A23187-stimulated phosphorylation of 4E-BP was blocked by a chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside, AICAR) and a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), but not by U0126, indicating involvement of AMPK and PI3K. Determination of AMPK phosphorylation showed that treatment with either A23187 or thapsigargin inhibited AMPK phosphorylation. Moreover, PTTH appeared to inhibit AMPK phosphorylation in a Ca2+-dependent manner. Altogether, these results indicate interconnections among Ca2+ signaling, AMPK, and 4E-BP phosphorylation in PTTH-activated PGs of B. mori.


Assuntos
Bombyx/genética , Bombyx/metabolismo , Hormônios de Inseto/metabolismo , Proteínas de Insetos/genética , Transdução de Sinais , Animais , Bombyx/crescimento & desenvolvimento , Glândulas Exócrinas/metabolismo , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fosforilação
5.
J Insect Physiol ; 72: 61-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25497117

RESUMO

In the present study, we investigated the modulatory effects of ecdysteroidogenesis of prothoracic glands (PGs) by bombyxin, an endogenous insulin-like peptide in the silkworm, Bombyx mori. The results showed that bombyxin stimulated ecdysteroidogenesis during a long-term incubation period and in a dose-dependent manner. Moreover, the injection of bombyxin into day 4-last instar larvae increased ecdysteroidogenesis 24h after the injection, indicating its possible in vivo function. Phosphorylation of the insulin receptor and Akt, and the target of rapamycin (TOR) signaling were stimulated by bombyxin, and stimulation of Akt phosphorylation and TOR signaling appeared to be dependent on phosphatidylinositol 3-kinase (PI3K). Bombyxin inhibited the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), and the inhibition appeared to be PI3K-independent. Bombyxin-stimulated ecdysteroidogenesis was blocked by either an inhibitor of PI3K (LY294002) or a chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside, AICAR), indicating involvement of the PI3K/Akt and AMPK signaling pathway. Bombyxin did not stimulate extracellular signal-regulated kinase (ERK) signaling of PGs. Bombyxin, but not prothoracicotropic hormone (PTTH) stimulated cell viability of PGs. In addition, bombyxin treatment also affected mRNA expression levels of insulin receptor, Akt, AMPKα, -ß, and -γ in time-dependent manners. These results suggest that bombyxin modulates ecdysteroidogenesis in B. mori PGs during development.


Assuntos
Bombyx/metabolismo , Ecdisteroides/biossíntese , Neuropeptídeos/farmacologia , Aminoimidazol Carboxamida/agonistas , Aminoimidazol Carboxamida/análogos & derivados , Animais , Bombyx/crescimento & desenvolvimento , Cromonas/farmacologia , Glândulas Endócrinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hormônios de Inseto/biossíntese , Proteínas de Insetos/metabolismo , Larva/metabolismo , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Ribonucleotídeos/agonistas , Transdução de Sinais
6.
PLoS One ; 8(5): e63102, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671658

RESUMO

In this study, we investigated inhibition of the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) by prothoracicotropic hormone (PTTH) in prothoracic glands of the silkworm, Bombyx mori. We found that treatment with PTTH in vitro inhibited AMPK phosphorylation in time- and dose-dependent manners, as seen on Western blots of glandular lysates probed with antibody directed against AMPKα phosphorylated at Thr172. Moreover, in vitro inhibition of AMPK phosphorylation by PTTH was also verified by in vivo experiments: injection of PTTH into day 7 last instar larvae greatly inhibited glandular AMPK phosphorylation. PTTH-inhibited AMPK phosphorylation appeared to be partially reversed by treatment with LY294002, indicating involvement of phosphatidylinositol 3-kinase (PI3K) signaling. A chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside, AICAR) increased both basal and PTTH-inhibited AMPK phosphorylation. Treatment with AICAR also inhibited PTTH-stimulated ecdysteroidogenesis of prothoracic glands. The mechanism underlying inhibition of PTTH-stimulated ecdysteroidogenesis by AICAR was further investigated by determining the phosphorylation of eIF4E-binding protein (4E-BP) and p70 ribosomal protein S6 kinase (S6K), two known downstream signaling targets of the target of rapamycin complex 1 (TORC1). Upon treatment with AICAR, decreases in PTTH-stimulated phosphorylation of 4E-BP and S6K were detected. In addition, treatment with AICAR did not affect PTTH-stimulated extracellular signal-regulated kinase (ERK) phosphorylation, indicating that AMPK phosphorylation is not upstream signaling for ERK phosphorylation. Examination of gene expression levels of AMPKα, ß, and γ by quantitative real-time PCR (qRT-PCR) showed that PTTH did not affect AMPK transcription. From these results, it is assumed that inhibition of AMPK phosphorylation, which lies upstream of PTTH-stimulated TOR signaling, may play a role in PTTH stimulation of ecdysteroidogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Bombyx/efeitos dos fármacos , Ecdisteroides/biossíntese , Glândulas Endócrinas/efeitos dos fármacos , Hormônios de Inseto/farmacologia , Proteínas de Insetos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Western Blotting , Bombyx/genética , Bombyx/metabolismo , Cromonas/farmacologia , Relação Dose-Resposta a Droga , Glândulas Endócrinas/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Dados de Sequência Molecular , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleotídeos/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo
7.
Insect Biochem Mol Biol ; 41(3): 197-202, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21199670

RESUMO

The prothoracicotropic hormone (PTTH) stimulates ecdysteroidogenesis by prothoracic gland in larval insects. Previous studies showed that Ca(2+), cAMP, extracellular signal-regulated kinase (ERK), and tyrosine kinase are involved in PTTH-stimulated ecdysteroidogenesis by the prothoracic glands of both Bombyx mori and Manduca sexta. In the present study, the involvement of phosphoinositide 3-kinase (PI3K)/Akt signaling in PTTH-stimulated ecdysteroidogenesis by B. mori prothoracic glands was further investigated. The results showed that PTTH-stimulated ecdysteroidogenesis was partially blocked by LY294002 and wortmannin, indicating that PI3K is involved in PTTH-stimulated ecdysteroidogenesis. Akt phosphorylation in the prothoracic glands appeared to be moderately stimulated by PTTH in vitro. PTTH-stimulated Akt phosphorylation was inhibited by LY294002. An in vivo PTTH injection into day 6 last instar larvae also increased Akt phosphorylation of the prothoracic glands. In addition, PTTH-stimulated ERK phosphorylation of the prothoracic glands was not inhibited by either LY294002 or wortmannin, indicating that PI3K is not involved in PTTH-stimulated ERK signaling. A23187 and thapsigargin, which stimulated B. mori prothoracic gland ERK phosphorylation and ecdysteroidogenesis, could not activate Akt phosphorylation. PTTH-stimulated ecdysteroidogenesis was not further activated by insulin, indicating the absence of an additive action of insulin and PTTH on the prothoracic glands. The present study, together with the previous demonstration that insulin stimulates B. mori ecdysteroidogenesis through PI3K/Akt signaling, suggests that crosstalk exists in B. mori prothoracic glands between insulin and PTTH signaling, which may play a critical role in precisely regulated ecdysteroidogenesis during development.


Assuntos
Bombyx/enzimologia , Ecdisteroides/biossíntese , Hormônios de Inseto/metabolismo , Transdução de Sinais , 1-Fosfatidilinositol 4-Quinase/metabolismo , Androstadienos/antagonistas & inibidores , Animais , Bombyx/metabolismo , Calcimicina/metabolismo , Cromonas/antagonistas & inibidores , Ecdisteroides/metabolismo , Insulina/metabolismo , Larva/enzimologia , Larva/metabolismo , Morfolinas/antagonistas & inibidores , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tapsigargina/metabolismo , Wortmanina
8.
Arch Insect Biochem Physiol ; 58(1): 17-26, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15599936

RESUMO

The cellular mechanism underlying ecdysteroidogenesis throughout the last larval instar of the silkworm, Bombyx mori, was analyzed by determining the in vitro ecdysteroid secretory activity of the prothoracic glands and cAMP accumulation of gland cells, as well as changes in responsiveness to stimulation by prothoracicotropic hormone (PTTH) and 1-methyl-3-isobutylxanthine (MIX). It was found that the prothoracic glands during the first 3 days of the last instar cannot produce detectable ecdysteroid and showed no response to stimulation by PTTH or 1-methyl-3-isobutylxanthine (MIX). However, artificial elevation of cellular cAMP levels by in vitro dibutyryl cAMP treatment stimulated the glands to secrete detectable ecdysteroid, implying the presence of a cAMP-dependent ecdysteroidogenic apparatus during this stage. From days 3 to 8, basal gland activities fluctuated, but the glands showed activation responses to PTTH and to the chemicals that increase cellular cAMP levels. After the occurrence of the peak in basal gland activity on day 9, glands on day 10 showed no response to PTTH, implying a refractory state of the glands to PTTH stimulation. For cAMP accumulation, it was found that glands on day 2 began to show increased cAMP accumulation to PTTH, implying that the acquisition of gland competency for elevation of cAMP levels after stimulation by PTTH precedes that of ecdysteroid production. Moreover, during most parts of the last larval instar (between days 3 and 8) and at the pupation stage, greatly increased cAMP accumulation upon stimulation by PTTH was observed only in the presence of MIX, indicating that cAMP phosphodiesterase levels may be high during these stages. From these results, we concluded that development-specific PTTH signal transduction during the last larval instar, which shows a different pattern from that of the penultimate larval instar, may play an important role in regulating changes in prothoracic gland activity and in leading to larval-pupal metamorphosis.


Assuntos
Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Ecdisteroides/biossíntese , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Bucladesina/farmacologia , AMP Cíclico/metabolismo , Expressão Gênica , Larva/efeitos dos fármacos , Larva/metabolismo , Metamorfose Biológica/fisiologia , Neuropeptídeos/farmacologia , Pupa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA