Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 103: 105129, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640836

RESUMO

BACKGROUND: Poly(ADP-ribose) polymerase (PARP) inhibitors have emerged as promising chemotherapeutic drugs primarily against BRCA1/2-associated tumours, known as synthetic lethality. However, recent clinical trials reported patients' survival benefits from PARP inhibitor treatments, irrelevant to homologous recombination deficiency. Therefore, revealing the therapeutic mechanism of PARP inhibitors beyond DNA damage repair is urgently needed, which can facilitate precision medicine. METHODS: A CRISPR-based knock-in technology was used to establish stable BRCA1 mutant cancer cells. The effects of PARP inhibitors on BRCA1 mutant cancer cells were evaluated by biochemical and cell biological experiments. Finally, we validated its in vivo effects in xenograft and patient-derived xenograft (PDX) tumour mice. FINDINGS: In this study, we uncovered that the majority of clinical BRCA1 mutations in breast cancers were in and near the middle of the gene, rather than in essential regions for DNA damage repair. Representative mutations such as R1085I and E1222Q caused transient extra spindle poles during mitosis in cancer cells. PAR, which is synthesized by PARP2 but not PARP1 at mitotic centrosomes, clustered these transient extra poles, independent of DNA damage response. Common PARP inhibitors could effectively suppress PARP2-synthesized PAR and induce cell senescence by abrogating the correction of mitotic extra-pole error. INTERPRETATION: Our findings uncover an alternative mechanism by which PARP inhibitors efficiently suppress tumours, thereby pointing to a potential new therapeutic strategy for centrosome error-related tumours. FUNDING: Funded by National Natural Science Foundation of China (NSFC) (T2225006, 82272948, 82103106), Beijing Municipal Natural Science Foundation (Key program Z220011), and the National Clinical Key Specialty Construction Program, P. R. China (2023).


Assuntos
Proteína BRCA1 , Senescência Celular , Centrossomo , Dano ao DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Humanos , Animais , Centrossomo/metabolismo , Centrossomo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Camundongos , Proteína BRCA1/genética , Linhagem Celular Tumoral , Feminino , Mutação , Reparo do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética
2.
STAR Protoc ; 5(2): 102953, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38489270

RESUMO

High mortality of ovarian cancer (OC) is primarily attributed to the lack of effective early detection methods. Uterine fluid, pooling molecules from neighboring ovaries, presents an organ-specific advantage over conventional blood samples. Here, we present a protocol for identifying metabolite biomarkers in uterine fluid for early OC detection. We describe steps for uterine fluid collection from patients, metabolite extraction, metabolomics experiments, and candidate metabolite biomarker screening. This standardized workflow holds the potential to achieve early OC diagnosis in clinical practice. For complete details on the use and execution of this protocol, please refer to Wang et al.1.


Assuntos
Biomarcadores Tumorais , Líquidos Corporais , Detecção Precoce de Câncer , Metabolômica , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/diagnóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Metabolômica/métodos , Detecção Precoce de Câncer/métodos , Líquidos Corporais/metabolismo , Líquidos Corporais/química , Útero/metabolismo
3.
Cell Rep Med ; 4(6): 101061, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37267943

RESUMO

Ovarian cancer (OC) causes high mortality in women because of ineffective biomarkers for early diagnosis. Here, we perform metabolomics analysis on an initial training set of uterine fluid from 96 gynecological patients. A seven-metabolite-marker panel consisting of vanillylmandelic acid, norepinephrine, phenylalanine, beta-alanine, tyrosine, 12-S-hydroxy-5,8,10-heptadecatrienoic acid, and crithmumdiol is established for detecting early-stage OC. The panel is further validated in an independent sample set from 123 patients, discriminating early OC from controls with an area under the curve (AUC) of 0.957 (95% confidence interval [CI], 0.894-1). Interestingly, we find elevated norepinephrine and decreased vanillylmandelic acid in most OC cells, resulting from excess 4-hydroxyestradiol that antagonizes the catabolism of norepinephrine by catechol-O-methyltransferase. Moreover, exposure to 4-hydroxyestradiol induces cellular DNA damage and genomic instability that could lead to tumorigenesis. Thus, this study not only reveals metabolic features in uterine fluid of gynecological patients but also establishes a noninvasive approach for the early diagnosis of OC.


Assuntos
Catecol O-Metiltransferase , Neoplasias Ovarianas , Humanos , Feminino , Ácido Vanilmandélico , Detecção Precoce de Câncer , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Metaboloma , Norepinefrina
4.
J Med Chem ; 65(22): 15028-15047, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36331508

RESUMO

Quinazoline and its derivatives have drawn much attention in the development of potential antitumor agents. Here, we synthesized a series of 1,2,3-triazole derivatives of quinazoline at the C6 position and evaluated for their cytotoxic activity in various human cancer cell lines. We found that compound 5a was the most cytotoxic to HCT-116 cells (IC50, 0.36 µM). Target profiling found that 5a directly binds to both the autophagy-associated protein SQSTM1/P62 and the E3 ligase RNF168, promoting their interaction. Consistently, 5a treatment induces a decrease in RNF168-mediated H2A ubiquitination and compromises homologous recombination-mediated DNA repair, thus increasing the sensitivity of HCT-116 to X-ray radiation. Moreover, 5a suppressed xenografted tumor growth in mice in a dose-dependent manner. Taken together, the 1,2,3-triazole derivative of quinazoline 5a may serve as a novel compound for tumor therapy based on its role in promoting a P62/RNF168 interaction.


Assuntos
Reparo do DNA , Quinazolinas , Triazóis , Animais , Humanos , Camundongos , Células HCT116 , Quinazolinas/farmacologia , Proteína Sequestossoma-1/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Triazóis/farmacologia , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Antineoplásicos/farmacologia
5.
Front Cell Dev Biol ; 10: 889656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517499

RESUMO

Breast cancer type 1 susceptibility protein (BRCA1) is essential for homologous recombination repair of DNA double-strand breaks. Loss of BRCA1 is lethal to embryos due to extreme genomic instability and the activation of p53-dependent apoptosis. However, the apoptosis is resisted in BRCA1-deficient cancer cells even though their p53 is proficient. In this study, by analysis of transcriptome data of ovarian cancer patients bearing BRCA1 defects in TCGA database, we found that cAMP signaling pathway was significantly activated. Experimentally, we found that BRCA1 deficiency caused an increased expression of ADRB1, a transmembrane receptor that can promote the generation of cAMP. The elevated cAMP not only inhibited DNA damage-induced apoptosis through abrogating p53 accumulation, but also suppressed the proliferation of cytotoxic T lymphocytes by enhancing the expression of immunosuppressive factors DKK1. Inhibition of ADRB1 effectively killed cancer cells by abolishing the apoptotic resistance. These findings uncover a novel mechanism of apoptotic resistance in BRCA1-deficient ovarian cancer cells and point to a potentially new strategy for treating BRCA1-mutated tumors.

6.
Nat Commun ; 12(1): 1243, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623049

RESUMO

To date, a large number of mutations have been screened from breast and ovarian cancer patients. However, most of them are classified into benign or unidentified alterations due to their undetectable phenotypes. Whether and how they could cause tumors remains unknown, and this significantly limits diagnosis and therapy. Here, in a study of a family with hereditary breast and ovarian cancer, we find that two BARD1 mutations, P24S and R378S, simultaneously exist in cis in surviving cancer patients. Neither of the single mutations causes a functional change, but together they synergetically impair the DNA damage response and lead to tumors in vitro and in vivo. Thus, our report not only demonstrates that BARD1 defects account for tumorigenesis but also uncovers the potential risk of synergetic effects between the large number of cis mutations in individual genes in the human genome.


Assuntos
Carcinogênese/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Mutação/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Animais , Proteína BRCA1/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dano ao DNA , Análise Mutacional de DNA , Feminino , Instabilidade Genômica/genética , Síndrome Hereditária de Câncer de Mama e Ovário/patologia , Humanos , Masculino , Camundongos , Linhagem , Peptídeos/metabolismo , Ligação Proteica , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Commun ; 7: 12497, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27511885

RESUMO

Maintenance of energy homeostasis is essential for cell survival. Here, we report that the ATP- and ubiquitin-independent REGγ-proteasome system plays a role in maintaining energy homeostasis and cell survival during energy starvation via repressing rDNA transcription, a major intracellular energy-consuming process. Mechanistically, REGγ-proteasome limits cellular rDNA transcription and energy consumption by targeting the rDNA transcription activator SirT7 for ubiquitin-independent degradation under normal conditions. Moreover, energy starvation induces an AMPK-directed SirT7 phosphorylation and subsequent REGγ-dependent SirT7 subcellular redistribution and degradation, thereby further reducing rDNA transcription to save energy to overcome cell death. Energy starvation is a promising strategy for cancer therapy. Our report also shows that REGγ knockdown markedly improves the anti-tumour activity of energy metabolism inhibitors in mice. Our results underscore a control mechanism for an ubiquitin-independent process in maintaining energy homeostasis and cell viability under starvation conditions, suggesting that REGγ-proteasome inhibition has a potential to provide tumour-starving benefits.


Assuntos
Autoantígenos/metabolismo , Homeostase , Neoplasias/terapia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Sobrevivência Celular , Citoplasma/metabolismo , DNA Ribossômico/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Fosforilação , Ubiquitina/metabolismo
8.
J Nanosci Nanotechnol ; 16(4): 3777-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451708

RESUMO

Iron ore tailings as secondary resources have been of great importance to many countries in the world. Their compositions are similar to that of infrared emission ceramics, but there are few reports about it. In addition, tourmaline has high infrared emission properties due to its unique structure. With the purpose of expanding functional utilization of iron ore tailings, as well as reducing the production cost of far infrared ceramics, a new kind of far infrared emission ceramics was prepared by using iron ore tailings, calcium carbonate, silica, and natural tourmaline. The ceramics powders were characterized by Fourier transform infrared spectroscope, X-ray diffraction and scanning electron microscopy, respectively. The results show that after being sintered at 1065 °C, the percentage of pseudobrookite and lattice strain of samples increased with increasing the elbaite content. Furthermore, the added tourmaline was conducive to the densification sintering of ceramics. The appearance of Li-O vibration at 734.73 cm-1, as well as the strengthened Fe-O vibration at 987.68 cm-1 were attributed to the formation of Li0.375Fe1.23Ti1.4O5 solid solution, which led the average far infrared emissivity of ceramics increase from 0.861 to 0.906 within 8-14 µm.

9.
Nat Commun ; 6: 8450, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26439168

RESUMO

Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer.


Assuntos
Carcinogênese/genética , Centrossomo/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição Sp/genética , Aneuploidia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Células HCT116 , Células HeLa , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Mitose/genética , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA