Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Geriatr ; 24(1): 523, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886643

RESUMO

PURPOSE: Smoking is a risk factor for sarcopenia. Nevertheless, few studies analyzed the independent effects of various smoking dimensions (duration, intensity, cumulative dose) on sarcopenia risk. This is a cross-sectional study based on an older population in Zhejiang Province to determine which smoking dimensions are mainly important for sarcopenia risk and to explore the dose-response relationship between them. METHODS: Our study included 783 patients with sarcopenia and 4918 non-sarcopenic individuals. Logistic regression and restricted cubic with logistic regression (for nonlinear dose effects) were used to obtain odds ratios (ORs) and 95% confidence intervals as well as restricted cubic splines (RCS) curves. RESULTS: Compared with never-smokers, current smokers had an increased risk of sarcopenia (OR = 1.786; 95% CI 1.387-2.301) after adjusting for confounders such as age, sex, education, alcohol consumption, disease history, etc. There was no significant association between smoking intensity and sarcopenia after more than 20 cigarettes per day (OR = 1.484; 95% CI 0.886-2.487), whereas the risk of sarcopenia increased significantly with increasing duration of smoking after more than 40 years (OR = 1.733; 95% CI 1.214-2.473). Meanwhile, there was a significant non-linear dose-response relationship between smoking duration or intensity and the risk of sarcopenia. However, the risk of sarcopenia increased linearly with the number of pack-years of smoking, which is not a significant nonlinear dose-response relationship. CONCLUSIONS: This study indicated the association between smoking and sarcopenia. Both smoking duration and cumulative dose were significantly and positively associated with sarcopenia. These findings reflect the important role of the number of years of smoking in increasing the risk of sarcopenia and provide scientific evidence that different smoking dimensions may influence the risk of the sarcopenia.


Assuntos
Fumar Cigarros , Sarcopenia , Humanos , Sarcopenia/epidemiologia , Estudos Transversais , Masculino , Feminino , Idoso , China/epidemiologia , Fumar Cigarros/epidemiologia , Fumar Cigarros/efeitos adversos , Pessoa de Meia-Idade , Fatores de Risco , Idoso de 80 Anos ou mais
2.
J Hepatol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759889

RESUMO

BACKGROUND & AIMS: The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme 3-oxoacid CoA-transferase 1 (OXCT1). We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS: To investigate the expression pattern of OXCT1 in HCC in vivo, we conducted multiplex immunohistochemistry experiments on human HCC specimens. To explore the role of OXCT1 in mouse HCC tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS: Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4me3 level in the Arg1 promoter. In addition, pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreased CD8+ T-cell exhaustion and slower tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in patients with HCC. CONCLUSIONS: In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS: The intricate metabolism of liver macrophages plays a critical role in shaping hepatocellular carcinoma progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for hepatocellular carcinoma treatment. Herein, we found that the ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages (TAMs) and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. Pharmacological targeting or genetic downregulation of OXCT1 in TAMs enhances antitumor immunity and slows tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer.

3.
Bioorg Chem ; 147: 107367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626492

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers. Euphorbia kansui yielded 13-oxyingenol-dodecanoate (13OD), an ingenane-type diterpenoid, which had a strong cytotoxic effect on NSCLC cells. The underlying mechanism and potential target, however, remained unknown. The study found that 13OD effectively inhibited the cell proliferation and colony formation of NSCLC cells (A549 and H460 cells), with less toxicity in normal human lung epithelial BEAS-2B cells. Moreover, 13OD can cause mitochondrial dysfunction, and apoptosis in NSCLC cells. Mechanistically, the transcriptomics results showed that differential genes were mainly enriched in the mTOR and AMPK signaling pathways, which are closely related to cellular autophagy, the related indicators were subsequently validated. Additionally, bafilomycin A1 (Baf A1), an autophagy inhibitor, reversed the mitochondrial damage caused by 13OD. Furthermore, the Omics and Text-based Target Enrichment and Ranking (OTTER) method predicted ULK1 as a potential target of 13OD against NSCLC cells. This hypothesis was further confirmed using molecular docking, the cellular thermal shift assay (CETSA), and Western blot analysis. Remarkably, ULK1 siRNA inhibited 13OD's toxic activity in NSCLC cells. In line with these findings, 13OD was potent and non-toxic in the tumor xenograft model. Our findings suggested a possible mechanism for 13OD's role as a tumor suppressor and laid the groundwork for identifying targets for ingenane-type diterpenoids.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Relação Estrutura-Atividade , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Estrutura Molecular , Diterpenos/farmacologia , Diterpenos/química , Apoptose/efeitos dos fármacos , Animais , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química
4.
Medicine (Baltimore) ; 103(17): e37777, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669411

RESUMO

BACKGROUND: From the time of new diagnosis to treatment, cancer patients experience a variety of health problems that can affect the patient's health outcomes. Individuals with cancer are being given increasing responsibility for the self-management of their health and illness. The self-regulating common-sense model (CSM) is effective in patients' disease management. This article briefly introduces the common-sense model intervention, in which patients with cancer are affected by these interventions, what they are about, and what effects they have. METHODS: The authors systematically review evidence for the common-sense model of self-regulation for cancer using Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Based on a comprehensive literature search, we searched the Cochrane Library, PsycINFO, Embase, PubMed, Medline, CINAHL, CNKI, and WanFang databases. The included studies underwent a quality assessment using the Effective Public Health Practice Project (EPHPP). RESULTS: Eleven empirical studies illustrated the aspects of common-sense model interventions for cancer patients. It is concluded that common-sense model intervention has an effect on symptoms in cancer treatment, behavior, and quality of life, but more studies are needed to verify the use of common-sense model intervention to explore in patients with different cancers. The systematic review summarized a four-point paradigm about intervention content, including assessing the current situation, setting goals, having a disease education and psychological adjustment, and getting feedback for further response. However, the application of intervention requires specific analysis of patient behavior and outcomes. CONCLUSION: Common-sense model interventions are beneficial for the self-management of cancer patients; however, more intervention studies are needed to specify the cognitive, emotional, and coping styles of people with a particular cancer.


Assuntos
Neoplasias , Qualidade de Vida , Humanos , Neoplasias/psicologia , Neoplasias/terapia , Autogestão/métodos
5.
Biophys J ; 123(7): 839-846, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38419331

RESUMO

Ras proteins are important intracellular signaling hubs that can interact with numerous downstream effectors and upstream regulators through their GTPase domains (G-domains) anchored to plasma membranes by the C-terminal hypervariable regions (HVRs). The biological functions of Ras were proposed to be regulated at multiple levels including the intramolecular G-domain-HVR interactions, of which the exact mechanism and specificity are still controversial. Here, we demonstrate that the HVRs, instead of having direct contacts, can weakly perturb the G-domains via an allosteric interaction that is restricted to a ∼20 Å range and highly conserved in the tested Ras isoforms (HRas and KRas4B) and nucleotide-bound states. The origin of this allosteric perturbation has been localized to a short segment (residues 167-171) coinciding with region 1 of HVRs, which exhibits moderate to weak α-helical propensities. A charge-reversal mutation (E168K) of KRas4B in region 1, previously described in the Catalog of Somatic Mutations in Cancer database, was found to induce similar chemical shift perturbations as truncation of the HVR does. Further membrane paramagnetic relaxation enhancement (mPRE) data show that this region 1 mutation alters the membrane orientations of KRas4B and moderately increases the relative population of the signaling-compatible state.


Assuntos
Transdução de Sinais , Proteínas ras , Isoformas de Proteínas/química , Membrana Celular/metabolismo , Mutação , Proteínas ras/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA