Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
BMC Cancer ; 24(1): 1068, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210306

RESUMO

BACKGROUND: Disulfidptosis is an emerging form of cellular death resulting from the binding of intracellular disulfide bonds to actin cytoskeleton proteins. This study aimed to investigate the expression and prognostic significance of hub disulfidptosis-related lncRNAs (DRLRs) in R0 resected hepatocellular carcinoma (HCC) as well as their impact on the malignant behaviour of HCC cells. METHODS: A robust signature for R0 resected HCC was constructed using least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression and was validated in an independent internal validation cohort to predict the prognosis of R0 HCC patients. Comprehensive bioinformatics analysis was performed on the hub DRLRs (KDM4A-AS1, MKLN1-AS, and TMCC1-AS1), followed by experimental validation using quantitative real-time polymerase chain reaction (qRT‒PCR) and cellular functional assays. RESULTS: The signature served as an independent prognostic factor applicable to R0 HCC patients across different age groups, tumour stages, and pathological characteristics. Gene Ontology (GO) and gene set enrichment analysis (GSEA) revealed hub pathways associated with this signature. The high-risk group presented an increased abundance of M0 macrophages and activated memory CD4 T cells as well as elevated macrophage and major histocompatibility complex (MHC) class I expression. High-risk R0 HCC patients also presented increased tumour immune dysfunction and exclusion scores (TIDEs), mutation frequencies, and tumour mutational burdens (TMBs). Drug sensitivity analysis revealed that high-risk patients were more responsive to drugs, including GDC0810 and osimertinib. High expression levels of the three hub DRLRs were detected in R0 HCC tissues and HCC cell lines. Functional assays revealed that the three hub DRLRs enhanced HCC cell proliferation, migration, and invasion. CONCLUSIONS: A signature was constructed on the basis of three DRLRs, providing novel insights for personalized precision therapy in R0 HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , RNA Longo não Codificante/genética , Prognóstico , Masculino , Biomarcadores Tumorais/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Proliferação de Células/genética , Linhagem Celular Tumoral , Biologia Computacional/métodos
2.
J Transl Med ; 21(1): 248, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029408

RESUMO

BACKGROUND: Cancer associated fibroblasts (CAFs) communicate metabolically with tumor genesis and development. Rocuronium bromide (RB) is reported to exert certain inhibitory effect on tumor. Here, we investigate the role of RB in esophageal cancer (EC) malignant progression. METHODS: Tumor xenograft models with EC cells were locally and systemically administrated with RB to detect the influence of different administrations on tumor progression. Mouse CAFs PDGFRα+/F4/80- were sorted by Flow cytometry with specific antibodies. CAFs were treated with RB and co-cultured with EC cells. The proliferation, invasion and apoptosis assays of EC cells were performed to detect the influences of RB targeting CAFs on EC cell malignant progression. Human fibroblasts were employed to perform these detections to confirm RB indirect effect on EC cells. The gene expression changes of CAFs response to RB treatment were detected using RNA sequencing and verified by Western blot, immunohistochemistry and ELISA. RESULTS: Tumors in xenograft mice were observed significantly inhibited by local RB administration, but not by systemic administration. Moreover EC cells did not show obvious change in viability when direct stimulated with RB in vitro. However, when CAFs treated with RB were co-cultured with EC cells, obvious suppressions were observed in EC cell malignancy, including proliferation, invasion and apoptosis. Human fibroblasts were employed to perform these assays and similar results were obtained. RNA sequencing data of human fibroblast treated with RB, and Western blot, immunohistochemistry and ELISA results all showed that CXCL12 expression was significantly diminished in vivo and in vitro by RB. EC cells direct treated with CXCL12 showed much higher malignancy. Moreover cell autophagy and PI3K/AKT/mTOR signaling pathway in CAFs were both suppressed by RB which can be reversed by Rapamycin pretreatment. CONCLUSIONS: Our data suggest that RB could repress PI3K/AKT/mTOR signaling pathway and autophagy to block the CXCL12 expression in CAFs, thereby weakening the CXCL12-mediated EC tumor progression. Our data provide a novel insight into the underlying mechanism of RB inhibiting EC, and emphasize the importance of tumor microenvironment (cytokines from CAFs) in modulating cancer malignant progression.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Humanos , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Rocurônio/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligantes , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Neoplasias Esofágicas/patologia , Serina-Treonina Quinases TOR/metabolismo , Movimento Celular , Proliferação de Células , Microambiente Tumoral
3.
Front Immunol ; 13: 1058493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532024

RESUMO

Basement membranes (BMs) are specialised extracellular matrices that maintain cellular integrity and resist the breaching of carcinoma cells for metastases while regulating tumour immunity. The tumour immune microenvironment (TME) is essential for tumour growth and the response to and benefits from immunotherapy. In this study, the BM score and TME score were constructed based on the expression signatures of BM-related genes and the presence of immune cells in lung adenocarcinoma (LUAD), respectively. Subsequently, the BM-TME classifier was developed with the combination of BM score and TME score for accurate prognostic prediction. Further, Kaplan-Meier survival estimation, univariate Cox regression analysis and receiver operating characteristic curves were used to cross-validate and elucidate the prognostic prediction value of the BM-TME classifier in several cohorts. Findings from functional annotation analysis suggested that the potential molecular regulatory mechanisms of the BM-TME classifier were closely related to the cell cycle, mitosis and DNA replication pathways. Additionally, the guiding value of the treatment strategy of the BM-TME classifier for LUAD was determined. Future clinical disease management may benefit from the findings of our research.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Membrana Basal , Mitose , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Microambiente Tumoral/genética
4.
J Oncol ; 2022: 2960050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276294

RESUMO

Cell cycle-related kinase (CCRK) is most closely related to cyclin-dependent protein kinase, which may activate cyclin-dependent kinase 2 and is associated with the growth of human cancer cells. However, the expression and function of CCRK in the pathogenesis of clear cell renal cell cancer (ccRCC) are unclear. Herein, this research aimed to explore the potential mechanism of the targeted regulation of CCRK by miR-335-5p on the proliferation and tumorigenicity of human ccRCC cells. The results showed that CCRK was significantly overexpressed in ccRCC tissues and cells, and knockdown of the CCRK expression by shRNA inhibited cell proliferation in vitro and in vivo and enhanced cell apoptosis in vitro, which indicated that CCRK could be a potential target for antitumour drugs in the treatment of ccRCC. Moreover, miR-335-5p was found to bind directly to the 3' untranslated region of CCRK, was expressed at markedly low levels in ccRCC cells, and was closely associated with the tumour stage. The overexpression of CCRK partially reversed the inhibitory effects of miR-335-5p on the cell growth of ccRCC, which implied that miR-335-5p could serve as a promising tumour inhibitor for ccRCC. In summary, CCRK could serve as an alternative antitumour drug target, and miR-335-5p could be a promising therapeutic tumour inhibitor for ccRCC treatment.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36091590

RESUMO

Currently, developing therapeutic strategies for chondrosarcoma (CS) remains important. Sennoside A (SA), a dianthrone glycoside from Senna and Rhubarb, is widely used as an irritant laxative, weight-loss agent, or dietary supplement, which possesses various bioactive properties such as laxative, antiobesity, and hypoglycemic activities. For the first time, our results suggested that cell proliferation and metastasis were inhibited by SA in CS SW1353 cells. SA induced cell growth arrest by inhibiting cell proliferation. The changes of N-cadherin and E-cadherin levels, the markers associated with epithelial mesenchymal transition (EMT), suggested the EMT-related mechanism of SA in inhibiting cell metastasis. Besides, SA significantly stimulated apoptosis in CS SW1353 cells, leading to cell death. The increase of Bax/Bcl2 ratio confirmed that the internal mitochondrial pathway of apoptosis was regulated by SA. In addition, the prediction of network pharmacology analysis suggested that the possible pathways of SA treatment for CS included the Wnt signaling pathway. Notably, the protein levels of the components in the Wnt pathway, such as Wnt3a, ß-catenin, and c-Myc, were downregulated by SA in CS SW1353 cells. To sum up, these results demonstrated that the suppression of the growth, metastasis and the stimulation of cytotoxicity, and apoptosis mediated by SA in CS SW1353 cells were possibly caused by the inhibition of the Wnt/ß-catenin pathway, indicating an underlying therapeutic prospect of SA for chondrosarcoma.

7.
Front Mol Neurosci ; 15: 933855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966015

RESUMO

Metformin is widely used in the treatment of type 2 diabetes (T2D) and plays a role in antitumor and antiobesity processes. A recent study identified its direct molecular target, PEN2 (PSENEN). PSENEN is the minimal subunit of the multiprotein complex γ-secretase, which promotes the differentiation of oligodendrocyte progenitors into astrocytes in the central nervous system. This study was mainly based on gene expression data and clinical data from the TCGA and CGGA databases. Analysis of differential expression of PSENEN between tissues from 31 cancers and paracancerous tissues revealed that it had high expression levels in most cancers except 2 cancers. Using univariate Cox regression analysis and Kaplan-Meier survival analysis, a high expression level of PSENEN was shown to be a risk factor in low-grade gliomas (LGG). Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses indicated that PSENEN is widely involved in immune-related signaling pathways in LGG. PSENEN expression level was significantly associated with TMB, MSI, tumor stemness index, and the expression levels of immunomodulatory genes in LGG. Finally, immune infiltration analysis revealed that PSENEN level was associated with the presence of various immune infiltrating cells, among which PSENEN was strongly associated with the presence of M2 macrophages and played a synergistic pro-cancer role. In conclusion, PSENEN may partially influence prognosis by modulating immune infiltration in patients with LGG, and PSENEN may be a candidate prognostic biomarker for determining prognosis associated with immune infiltration in LGG.

8.
J Immunol Res ; 2022: 1824166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033389

RESUMO

More and more studies have shown that long noncoding RNAs (lncRNAs) play essential roles in malignant tumors. The lncRNA MEG3 serves as a crucial molecule in breast cancer development, but the specific molecular mechanism needs to be further explored. We previously reported that Schlafen family member 5 (SLFN5) inhibits breast cancer malignant development by regulating epithelial-mesenchymal transition (EMT), invasion, and proliferation/apoptosis. Herein, we demonstrated that MEG3 was downregulated in pan-cancers and correlated with SLFN5 expression positively in breast cancer by bioinformatics analysis of TCGA and UCSC Xena data. Intervention with MEG3 positively affected SLFN5 expression in breast cancer cells. MEG3 repressed EMT and migration/invasion, similar to our previously reported functions of SLFN5 in breast cancer. Through bioinformatics analysis of starBase and LncBase data, 12 miRNAs were found to regulate both SLFN5 and MEG3, in which miR-146b-5p was confirmed to be regulated by MEG3 using MEG3 siRNA and overexpression method. MiR-146b-5p could bind to both SLFN5 3'UTR and MEG3, and inhibit their expression in a competing endogenous RNA mechanism, assayed by luciferase reporter and RNA pull down methods. Therefore, we conclude that MEG3 positively modulates SLFN5 expression by sponging miR-146b-5p and inhibits breast cancer development.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos
9.
Front Aging Neurosci ; 14: 949083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875800

RESUMO

Alzheimer's disease (AD), the most common neurodegenerative disease, remains unclear in terms of its underlying causative genes and effective therapeutic approaches. Meanwhile, abnormalities in iron metabolism have been demonstrated in patients and mouse models with AD. Therefore, this study sought to find hub genes based on iron metabolism that can influence the diagnosis and treatment of AD. First, gene expression profiles were downloaded from the GEO database, including non-demented (ND) controls and AD samples. Fourteen iron metabolism-related gene sets were downloaded from the MSigDB database, yielding 520 iron metabolism-related genes. The final nine hub genes associated with iron metabolism and AD were obtained by differential analysis and WGCNA in brain tissue samples from GSE132903. GO analysis revealed that these genes were mainly involved in two major biological processes, autophagy and iron metabolism. Through stepwise regression and logistic regression analyses, we selected four of these genes to construct a diagnostic model of AD. The model was validated in blood samples from GSE63061 and GSE85426, and the AUC values showed that the model had a relatively good diagnostic performance. In addition, the immune cell infiltration of the samples and the correlation of different immune factors with these hub genes were further explored. The results suggested that these genes may also play an important role in immunity to AD. Finally, eight drugs targeting these nine hub genes were retrieved from the DrugBank database, some of which were shown to be useful for the treatment of AD or other concomitant conditions, such as insomnia and agitation. In conclusion, this model is expected to guide the diagnosis of patients with AD by detecting the expression of several genes in the blood. These hub genes may also assist in understanding the development and drug treatment of AD.

10.
Onco Targets Ther ; 15: 411-422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35469339

RESUMO

Cell adhesion manifests as cell linkages to neighboring cells and/or the extracellular matrix (ECM). Migfilin is a widely expressed adhesion protein. It comprises three LIM domains in the C-terminal region and one proline-rich sequence in the N-terminal region. Through interplay with its various binding partners, such as Kindlin-2, Filamin, vasodilator-stimulated phosphoprotein (VASP) protein and the transcription factor CSX, Migfilin facilitates the dynamic association of connecting actomyosin fibers, orchestrating cell morphogenetic movement and cell adhesion, proliferation, migration, invasion, differentiation and signal transduction. In this review, to further elucidate the functional contributions of and pathogenesis induced by Migfilin, we focused on the structure of Migfilin and the targets which it directly binds with. We also summarized the role of Migfilin and its binding partners in the progression of different diseases and malignancies. As a possible candidate for coordinating various cellular processes and because of its association with both the pathogenesis and progression of certain tumors, Migfilin likely has utility as a therapeutic target against multiple diseases in the clinic.

11.
Cell Death Dis ; 13(4): 306, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383153

RESUMO

Nogo-B (Reticulon 4B) is reportedly a regulator of angiogenesis during the development and progression of cancer. However, whether Nogo-B regulates angiogenesis and post-myocardial infarction (MI) cardiac repair remains elusive. In the present study, we aimed to explore the role and underlying mechanisms of Nogo-B in cardiac repair during MI. We observed an increased expression level of Nogo-B in the heart of mouse MI models, as well as in isolated cardiac microvascular endothelial cells (CMECs). Moreover, Nogo-B was significantly upregulated in CMECs exposed to oxygen-glucose deprivation (OGD). Nogo-B overexpression in the endothelium via cardiotropic adeno-associated virus serotype 9 (AAV9) with the mouse endothelial-specific promoter Tie2 improved heart function, reduced scar size, and increased angiogenesis. RNA-seq data indicated that Notch signaling is a deregulated pathway in isolated CMECs along the border zone of the infarct with Nogo-B overexpression. Mechanistically, Nogo-B activated Notch1 signaling and upregulated Hes1 in the MI hearts. Inhibition of Notch signaling using a specific siRNA and γ-secretase inhibitor abolished the promotive effects of Nogo-B overexpression on network formation and migration of isolated cardiac microvascular endothelial cells (CMECs). Furthermore, endothelial Notch1 heterozygous deletion inhibited Nogo-B-induced cardioprotection and angiogenesis in the MI model. Collectively, this study demonstrates that Nogo-B is a positive regulator of angiogenesis by activating the Notch signaling pathway, suggesting that Nogo-B is a novel molecular target for ischemic disease.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Animais , Células Endoteliais/metabolismo , Endotélio , Camundongos , Infarto do Miocárdio/metabolismo , Neovascularização Patológica/genética , Transdução de Sinais
12.
Front Genet ; 13: 822261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222541

RESUMO

Recent studies have identified a role for ALKBH7 in the occurrence and progression of cancer, and this protein is related to cellular immunity and immune cell infiltration. However, the prognostic and immunotherapeutic value of ALKBH7 in different cancers have not been explored. In this study, we observed high ALKBH7 expression in 17 cancers and low expression in 5 cancers compared to paired normal tissues. Although ALKBH7 expression did not correlate relatively significantly with the clinical parameters of age (6/33), sex (3/33) and stage (3/27) in the cancers studied, the results of the survival analysis reflect the pan-cancer prognostic value of ALKBH7. In addition, ALKBH7 expression was significantly correlated with the TMB (7/33), MSI (13/33), mDNAsi (12/33) and mRNAsi (13/33) in human cancers. Moreover, ALKBH7 expression was associated and predominantly negatively correlated with the expression of immune checkpoint (ICP) genes in many cancers. Furthermore, ALKBH7 correlated with infiltrating immune cells and ESTIMATE scores, especially in PAAD, PRAD and THCA. Finally, the ALKBH7 gene coexpression network is involved in the regulation of cellular immune, oxidative, phosphorylation, and metabolic pathways. In conclusion, ALKBH7 may serve as a potential prognostic pan-cancer biomarker and is involved in the immune response. Our pan-cancer analysis provides insight into the role of ALKBH7 in different cancers.

13.
Front Cell Dev Biol ; 10: 817643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174152

RESUMO

Ferroptosis is a novel type of iron- and ROS-dependent cell death and is involved in various diseases. LncRNAs are involved and play important roles in the occurrence and development of several cancers. However, researches about the role of ferroptosis-related lncRNAs in glioma are relatively rare. Here, we identified nine ferroptosis-related lncRNAs and then constructed a prognostic model by the LASSO and Cox analysis. The model could predict overall survival with high sensitivity and specificity according to ROC curves. In addition, the cell cycle, p53 signaling, apoptosis, and oxidative phosphorylation pathways were obviously enriched in the pathogenesis of glioma by gene set enrichment analysis. A nomogram was constructed by integrating several independent prognostic clinicopathological features, and it could provide a valuable predictive tool for overall survival. Furthermore, a strong correlation between these nine lncRNAs and immunotherapy was found. Glioma patients in the high-risk group had higher TMB using somatic mutation data, different immune infiltration, and higher expression of immune checkpoints, indicating these patients might benefit from immune checkpoint inhibitor therapy. In summary, these nine ferroptosis-related lncRNAs were promising biomarkers for predicting overall survival and guiding immunotherapy or future immune checkpoint inhibitor development for glioma patients.

14.
Kaohsiung J Med Sci ; 37(9): 784-794, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34002462

RESUMO

A variety of microRNAs (miRNAs) are involved in the occurrence and development of hepatocellular carcinoma (HCC). However, the role of miR-10a-5p in the progression of HCC remains unclear. Therefore, the purpose of this study was to determine the role of miR-10a-5p in the development of HCC and the possible molecular mechanism. miR-10a-5p expression in HCC tissues and plasma from patients was detected by quantitative real-time polymerase chain reaction. Migratory changes in HCC cells were detected after the overexpression of miR-10a-5p. Epithelial-mesenchymal transition (EMT)-related proteins were detected by Western blot. Finally, through luciferase assay and rescue experiments, the mechanism by which miR-10a-5p regulates its downstream gene, human spindle and kinetochore-associated complex subunit 1, SKA1 and the interaction between these molecules in the development of HCC were determined. The expression of miR-10a-5p was markedly downregulated in HCC tissues, cell lines, and plasma. The overexpression of miR-10a-5p significantly inhibited the migration, invasion, and EMT of HCC cells. Furthermore, SKA1 was shown to be a downstream gene of miR-10a-5p. SKA1 silencing had the same effect as miR-10a-5p overexpression in HCC. In particular, the overexpression of SKA1 reversed the inhibitory effects of miR-10a-5p in HCC. Taken together, low miR-10a-5p expression is associated with HCC progression. miR-10a-5p inhibits the malignant development of HCC by negatively regulating SKA1.


Assuntos
Carcinoma Hepatocelular/patologia , Proteínas Cromossômicas não Histona/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/fisiologia , Metástase Neoplásica/genética , Adolescente , Carcinoma Hepatocelular/metabolismo , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Masculino , MicroRNAs/metabolismo
15.
Aging (Albany NY) ; 13(10): 13954-13967, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982673

RESUMO

To examine the role of S100B in genetic susceptibility to Alzheimer's disease (AD), we conducted a case-control study to analyze four polymorphism loci (rs2839364, rs1051169, rs2300403, and rs9722) of the S100B gene and AD risk. We found an independent increased risk of AD in ApoE ε4(-) subjects carrying the rs9722 AA-genotype (OR = 2.622, 95% CI = 1.399-4.915, P = 0.003). Further investigation revealed the serum S100B levels to be lower in rs9722 GG carriers than in rs9722 AA carriers (P = 0.003). We identified three miRNAs (miR-340-3p, miR-593-3p, miR-6827-3p) in which the seed match region covered locus rs9722. Luciferase assays indicated that the rs9722 G allele has a higher binding affinity to miR-6827-3p than the rs9722 A allele, leading to a significantly decreased fluorescence intensity. Subsequent western blot analysis showed that the S100B protein level of SH-SY5Y cells, which carry the rs9722 G allele, decreased significantly following miR-6827-3p stimulation (P = 0.009). The present study suggests that the rs9722 polymorphism may upregulate the expression of S100B by altering the miRNA binding capacity and may thus increase the AD risk. This finding would be of great help for the early diagnosis of AD.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Predisposição Genética para Doença , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Idoso , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular Tumoral , Ensaios Enzimáticos , Feminino , Frequência do Gene/genética , Haplótipos/genética , Humanos , Luciferases/metabolismo , Masculino , MicroRNAs/genética , Ligação Proteica/genética
16.
Biomed Res Int ; 2021: 6628682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33860045

RESUMO

BACKGROUND: Human Schlafen 5 (SLFN5) is reported to inhibit or promote the proliferation of several specific types of cancer cells by our lab and other researchers. We are curious about its implications in lung adenocarcinoma (LUAC), a malignant tumor with a high incidence rate and high mortality. METHOD: Lentiviral stable transfections of SLFN5-specific shRNA for knockdown and SLFN5 full-length coding sequence for overexpression were performed in LUAC cell for proliferation analysis in vitro and in vivo in nude mice. Clinical LUAC samples were collected for immunohistochemical analysis of SLFN5 protein levels. RESULTS: We found that knockdown of endogenous SLFN5 upregulates cancer cell proliferation while inhibiting apoptosis. Besides, SLFN5 inhibition on proliferation was also observed in a nude mouse xenograft model. In contrast, overexpression of exogenous SLFN5 inhibited cell proliferation in vitro and in vivo and promoted apoptosis. As to the signaling pathway, we found phosphatase and tensin homolog on chromosome 10 (PTEN) was positively regulated by SLFN5, while its downstream signaling pathway AKT/mammalian target of rapamycin (mTOR) was inhibited. Moreover, compared with adjacent normal tissues, SLFN5 protein levels were markedly decreased in lung adenocarcinoma tissues. In conclusion, these suggest that human SLFN5 plays inhibitory roles in LUAC progression through the PTEN/PI3K/AKT/mTOR pathway, providing a potential target for developing drugs for lung cancer therapy in the future.


Assuntos
Adenocarcinoma de Pulmão/patologia , Apoptose , Proteínas de Ciclo Celular/metabolismo , Neoplasias Pulmonares/patologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Animais , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Fosforilação , Transdução de Sinais , Transcrição Gênica
17.
Acupunct Med ; 39(5): 501-511, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33557583

RESUMO

OBJECTIVE: Parkinson's disease (PD) is a chronic neurodegenerative disease involving non-motor symptoms, of which gastrointestinal disorders are the most common. In light of recent results, intestinal dysfunction may be involved in the pathogenesis of PD. Electroacupuncture (EA) has shown potential effects, although the underlying mechanism remains mostly unknown. We speculated that EA could relieve the behavioral defects of PD, and that this effect would be associated with modulation of the gut microbiota. METHODS: Mice were randomly divided into three groups: control, PD + MA (manual acupuncture), and PD + EA. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) was used to establish the mouse model of PD. Rotarod performance tests, open field tests, and pole tests were carried out to assess motor deficiencies. Immunohistochemistry was conducted to examine the survival of dopaminergic neurons. 16S ribosomal RNA (rRNA) gene sequencing was applied to investigate the alterations of the gut microbiome. Quantitative real-time polymerase chain reaction (PCR) was performed to characterize the messenger RNA (mRNA) levels of pro-inflammatory and anti-inflammatory cytokines. RESULTS: We found that EA was able to alleviate the behavioral defects in the rotarod performance test and pole test, and partially rescue the significant loss of dopaminergic neurons in the substantia nigra (SN) chemically induced by MPTP in mice. Moreover, the PD + MA mice showed a tendency toward decreased intestinal microbial alpha diversity, while EA significantly reversed it. The abundance of Erysipelotrichaceae was significantly increased in PD + MA mice, and the alteration was also reversed by EA. In addition, the pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α were substantially increased in the SN of PD + MA mice, an effect that was reversed by EA. CONCLUSION: These results suggest that EA may alleviate behavioral defects via modulation of gut microbiota and suppression of inflammation in the SN of mice with PD, which provides new insights into the pathogenesis of PD and its treatment.


Assuntos
Eletroacupuntura , Microbioma Gastrointestinal , Doença de Parkinson/microbiologia , Doença de Parkinson/terapia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Comportamento Animal , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Doença de Parkinson/psicologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Front Genet ; 12: 798612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047016

RESUMO

Ferroptosis is associated with the prognosis and therapeutic responses of patients with various cancers. LncRNAs are reported to exhibit antitumor or oncogenic functions. Currently, few studies have assessed the combined effects of ferroptosis and lncRNAs on the prognosis and therapy of stomach cancer. In this study, transcriptomic and clinical data were downloaded from TCGA database, and ferroptosis-related genes were obtained from the FerrDb database. Through correlation analysis, Cox analysis, and the Lasso algorithm, 10 prognostic ferroptosis-related lncRNAs (AC009299.2, AC012020.1, AC092723.2, AC093642.1, AC243829.4, AL121748.1, FLNB-AS1, LINC01614, LINC02485, LINC02728) were screened to construct a prognostic model, which was verified in two test cohorts. Risk scores for patients with stomach cancer were calculated, and patients were divided into two risk groups. The low-risk group, based on the median value, had a longer overall survival time in the KM curve, and a lower proportion of dead patients in the survival distribution curve. Potential mechanisms and possible functions were revealed using GSEA and the ceRNA network. By integrating clinical information, the association between lncRNAs and clinical features was analyzed and several features affecting prognosis were identified. Then, a nomogram was developed to predict survival rates, and its good predictive performance was indicated by a relatively high C-index (0.67118161) and a good match in calibration curves. Next, the association between these lncRNAs and therapy was explored. Patients in the low-risk group had an immune-activating environment, higher immune scores, higher TMB, lower TIDE scores, and higher expression of immune checkpoints, suggesting they might receive a greater benefit from immune checkpoint inhibitor therapy. In addition, a significant difference in the sensitivity to mitomycin. C, cisplatin, and docetaxel, but not etoposide and paclitaxel, was observed. In summary, this model had guiding significance for prognosis and personalized therapy. It helped screen patients with stomach cancer who might benefit from immunotherapy and guided the selection of personalized chemotherapeutic drugs.

19.
Biomed Res Int ; 2020: 1971324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33313311

RESUMO

OBJECTIVE: To optimize the allocation of nursing resources, we investigate an alternative strategy for indwelling catheter cleaning. METHODS: The present study involved a total of 117 male patients and 54 female patients, who were catheterized after urinary surgery from Aug 2018 to Feb 2019. The samples of indwelling catheter cleaning solutions were divided by two parts for microbiological culture and microbiome analysis. RESULTS: No pathogenic bacteria were observed in the microbiological culture of the indwelling catheter cleaning samples from 24 h-uncleaned group and 48 h-uncleaned group. The microbiome analysis also showed no significant difference in bacterial diversity and quantity of the indwelling catheter cleaning solutions between the two groups. CONCLUSION: The indwelling catheter cleaning for male after urinary surgery can be prolonged to 48 h. The result of this study provided reliable basis for optimizing the allocation of clinical nursing resources.


Assuntos
Infecções Relacionadas a Cateter/prevenção & controle , Cateterismo/métodos , Cateteres de Demora/efeitos adversos , Infecções Urinárias/terapia , Adulto , Idoso , Biofilmes , Feminino , Hospitalização , Humanos , Masculino , Microbiota , Pessoa de Meia-Idade , Período Pós-Operatório , RNA Ribossômico 16S/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
20.
Oxid Med Cell Longev ; 2020: 4850328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178386

RESUMO

PURPOSE: Emerging evidence has shown that pinocembrin protects the myocardium from ischemic injury in animals. However, it is unknown whether it has cardioprotection when given at the onset of reperfusion. Also, mechanisms mediating the cardioprotective actions of pinocembrin were largely unknown. Thus, this study is aimed at investigating the effects of pinocembrin postconditioning on ischemia-reperfusion (I/R) injury and the underlying mechanisms. METHODS: The in vivo mouse model of myocardial I/R injury, ex vivo isolated rat heart with global I/R, and in vitro hypoxia/reoxygenation (H/R) injury model for primary cardiomyocytes were used. RESULTS: We found that pinocembrin postconditioning significantly reduced the infarct size and improved cardiac contractile function after acute myocardial I/R. Mechanically, in primary cardiomyocytes, we found that pinocembrin may confer protection in part via direct stimulation of cardiac glycolysis via promoting the expression of the glycolytic enzyme, PFKFB3. Besides, PFKFB3 inhibition abolished pinocembrin-induced glycolysis and protection in cardiomyocytes. More importantly, PFKFB3 knockdown via cardiotropic adeno-associated virus (AAV) abrogated cardioprotective effects of pinocembrin. Moreover, we demonstrated that HIF1α is a key transcription factor driving pinocembrin-induced PFKFB3 expression in cardiomyocytes. CONCLUSIONS: In conclusion, these results established that the acute cardioprotective benefits of pinocembrin are mediated in part via enhancing PFKFB3-mediated glycolysis via HIF1α, which may provide a new therapeutic target to impede the progression of myocardial I/R injury.


Assuntos
Cardiotônicos/farmacologia , Flavanonas/farmacologia , Glicólise/efeitos dos fármacos , Precondicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica , Miocárdio , Animais , Masculino , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/terapia , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA