Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 383: 110674, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37604220

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high morbidity and mortality. Targeting abnormal cholesterol metabolism is a potential therapeutic direction. Therefore, more natural drugs targeting cholesterol in HCC need to be developed. Gypenosides (Gyp), the major constituent of Gynostemma pentaphyllum, has been demonstrated to have pharmacological properties on anti-cancer, anti-obesity, and hepatoprotective. We investigated whether Gyp, isolated and purified by our lab, could inhibit HCC progression by inhibiting cholesterol synthesis. The present research showed that Gyp inhibited proliferation and migration, and induced apoptosis in Huh-7 and Hep3B cells. Metabolomics, transcriptomics, and target prediction all suggested that lipid metabolism and cholesterol biosynthesis were the mechanisms of Gyp. Gyp could limit the production of cholesterol and target HMGCS1, the cholesterol synthesis-related protein. Downregulation of HMGCS1 could suppress the progression and abnormal cholesterol metabolism of HCC. In terms of mechanism, Gyp suppressed mevalonate (MVA) pathway mediated cholesterol synthesis by inhibiting HMGCS1 transcription factor SREBP2. And the high expression of HMGCS1 in HCC human specimens was correlated with poor clinical prognosis. The data suggested that Gyp could be a promising cholesterol-lowering drug for the prevention and treatment of HCC. And targeting SREBP2-HMGCS1 axis in MVA pathway might be an effective HCC therapeutic strategy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Gynostemma , Ácido Mevalônico , Neoplasias Hepáticas/tratamento farmacológico , Hidroximetilglutaril-CoA Sintase
2.
J Ethnopharmacol ; 281: 114506, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34371113

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lung cancer is the chief reason of cancer death worldwide, and non-small cell lung cancer (NSCLC) make up the majority of lung cancers. Gypenosides are the main active constituents from Gynostemma pentaphyllum. Previous studies showed that they were used to remedy many cancers. The effect of gypenosides on NSCLC has never been studied from the perspective of network pharmacology and metabolomics. The mechanism is still not clear and remains to be explored. AIM OF THE STUDY: To explore the anti-NSCLC activity and mechanism of gypenosides in A549 cells. MATERIAL/METHODS: Gypenosides of G. pentaphyllum were detected by HPLC-MS. The cytotoxicity was detected by MTT assay. The migration, cell cycle and apoptosis of gypenosides were studied by wound healing assay, JC-1 assay and flow cytometry. The mechanism of gypenosides on NSCLC was studied by metabolomics and network pharmacology. Some key proteins and pathways were further confirmed by Western blot. RESULTS: Eleven gypenosides were detected by HPLC-MS. Gypenosides could suppress the proliferation of A549 cells, inhibit the migration of A549 cells, induce apoptosis and arrest cell cycle in G0/G1 phase. Metabolomics and network pharmacology approach revealed that gypenosides might affect 17 metabolite related proteins by acting on 9 candidate targets (STAT3, VEGFA, EGFR, MMP9, IL2, TYMS, FGF2, HPSE, LGALS3), thus resulting in the changes of two metabolites (uridine 5'-monophosphate, D-4'-Phosphopantothenate) and two metabolic pathways (pyrimidine metabolism; pantothenate and CoA biosynthesis). Western blotting indicated that gypenosides might inhibit A549 cells through MMP9, STAT3 and TYMS to indirectly affect the pathways of pyrimidine metabolism, pantothenate and CoA biosynthesis. CONCLUSIONS: This study revealed that metabolomics combined with network pharmacology was conducive to understand the anti-NSCLC mechanism of gypenosides.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Gynostemma , Humanos , Neoplasias Pulmonares/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metabolômica , Farmacologia em Rede , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/metabolismo , Timidilato Sintase/metabolismo , Cicatrização/efeitos dos fármacos
3.
Nat Prod Res ; 35(22): 4433-4441, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32037885

RESUMO

Heat-processed Gynostemma pentaphyllum has shown strong activity against human lung carcinoma A549 cells. In this study, two dammarane-type saponins together with two known compounds were isolated from the ethanol extract of the heat-processed leaves of G. pentaphyllum. They were identified as 2α,3ß,12ß-trihydroxydammar-20(22),24-diene-3-O-ß-D-glucopyranoside (1, namely damulin E), 2α,3ß,12ß-trihydroxydammar-20,24-diene-3-O-ß-D-glucopyranoside (2, namely damulin F), damulin A (3) and damulin B (4), respectively, using NMR and mass spectra. Damulin E and damulin F showed moderate activity against A549, H1299, T24, SH-SY5Y and K562 cell lines in vitro using CCK-8 assay.


Assuntos
Saponinas , Triterpenos , Células A549 , Gynostemma , Humanos , Saponinas/farmacologia , Triterpenos/farmacologia , Damaranos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA