Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 14, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172991

RESUMO

BACKGROUND: Neoantigens are patient- and tumor-specific peptides that arise from somatic mutations. They stand as promising targets for personalized therapeutic cancer vaccines. The identification process for neoantigens has evolved with the use of next-generation sequencing technologies and bioinformatic tools in tumor genomics. However, in-silico strategies for selecting immunogenic neoantigens still have very low accuracy rates, since they mainly focus on predicting peptide binding to Major Histocompatibility Complex (MHC) molecules, which is key but not the sole determinant for immunogenicity. Moreover, the therapeutic potential of neoantigen-based vaccines may be enhanced using an optimal delivery platform that elicits robust de novo immune responses. METHODS: We developed a novel neoantigen selection pipeline based on existing software combined with a novel prediction method, the Neoantigen Optimization Algorithm (NOAH), which takes into account structural features of the peptide/MHC-I interaction, as well as the interaction between the peptide/MHC-I complex and the TCR, in its prediction strategy. Moreover, to maximize neoantigens' therapeutic potential, neoantigen-based vaccines should be manufactured in an optimal delivery platform that elicits robust de novo immune responses and bypasses central and peripheral tolerance. RESULTS: We generated a highly immunogenic vaccine platform based on engineered HIV-1 Gag-based Virus-Like Particles (VLPs) expressing a high copy number of each in silico selected neoantigen. We tested different neoantigen-loaded VLPs (neoVLPs) in a B16-F10 melanoma mouse model to evaluate their capability to generate new immunogenic specificities. NeoVLPs were used in in vivo immunogenicity and tumor challenge experiments. CONCLUSIONS: Our results indicate the relevance of incorporating other immunogenic determinants beyond the binding of neoantigens to MHC-I. Thus, neoVLPs loaded with neoantigens enhancing the interaction with the TCR can promote the generation of de novo antitumor-specific immune responses, resulting in a delay in tumor growth. Vaccination with the neoVLP platform is a robust alternative to current therapeutic vaccine approaches and a promising candidate for future personalized immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas , Humanos , Animais , Camundongos , Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Peptídeos , Receptores de Antígenos de Linfócitos T/metabolismo , Imunoterapia/métodos
2.
Sci Rep ; 13(1): 11586, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463979

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are taxonomically widespread copper-enzymes boosting biopolymers conversion (e.g. cellulose, chitin) in Nature. White-rot Polyporales, which are major fungal wood decayers, may possess up to 60 LPMO-encoding genes belonging to the auxiliary activities family 9 (AA9). Yet, the functional relevance of such multiplicity remains to be uncovered. Previous comparative transcriptomic studies of six Polyporales fungi grown on cellulosic substrates had shown the overexpression of numerous AA9-encoding genes, including some holding a C-terminal domain of unknown function ("X282"). Here, after carrying out structural predictions and phylogenetic analyses, we selected and characterized six AA9-X282s with different C-term modularities and atypical features hitherto unreported. Unexpectedly, after screening a large array of conditions, these AA9-X282s showed only weak binding properties to cellulose, and low to no cellulolytic oxidative activity. Strikingly, proteomic analysis revealed the presence of multiple phosphorylated residues at the surface of these AA9-X282s, including a conserved residue next to the copper site. Further analyses focusing on a 9 residues glycine-rich C-term extension suggested that it could hold phosphate-binding properties. Our results question the involvement of these AA9 proteins in the degradation of plant cell wall and open new avenues as to the divergence of function of some AA9 members.


Assuntos
Basidiomycota , Cobre , Filogenia , Cobre/metabolismo , Proteômica , Polissacarídeos/metabolismo , Celulose/metabolismo , Basidiomycota/metabolismo , Fosfatos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
J Biol Chem ; 299(6): 104794, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164155

RESUMO

Clinical development of γ-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer's disease was aborted because of serious mechanism-based side effects in the phase III trials of unselective inhibitors. Selective inhibition of specific γ-secretase complexes, containing either PSEN1 or PSEN2 as the catalytic subunit and APH1A or APH1B as supporting subunits, does provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition. We synthesized a series of brain penetrant 2-azabicyclo[2,2,2]octane sulfonamides and identified a compound with low nanomolar potency and high selectivity (>250-fold) toward the PSEN1-APH1B subcomplex versus PSEN2 subcomplexes. We used modeling and site-directed mutagenesis to identify critical amino acids along the entry part of this inhibitor into the catalytic site of PSEN1. Specific targeting one of the different γ-secretase complexes might provide safer drugs in the future.


Assuntos
Secretases da Proteína Precursora do Amiloide , Complexos Multiproteicos , Presenilina-1 , Sulfonamidas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Presenilina-1/antagonistas & inibidores , Presenilina-1/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Sulfonamidas/farmacologia , Especificidade por Substrato , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo
4.
Biochemistry ; 62(2): 429-436, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35881507

RESUMO

Flavin-dependent carbohydrate oxidases are valuable tools in biotechnological applications due to their high selectivity in the oxidation of carbohydrates. In this study, we report the biochemical and structural characterization of a recently discovered carbohydrate oxidase from the bacterium Ralstonia solanacearum, which is a member of the vanillyl alcohol oxidase flavoprotein family. Due to its exceptionally high activity toward N-acetyl-d-galactosamine and N-acetyl-d-glucosamine, the enzyme was named N-acetyl-glucosamine oxidase (NagOx). In contrast to most known (fungal) carbohydrate oxidases, NagOx could be overexpressed in a bacterial host, which facilitated detailed biochemical and enzyme engineering studies. Steady state kinetic analyses revealed that non-acetylated hexoses were also accepted as substrates albeit with lower efficiency. Upon determination of the crystal structure, structural insights into NagOx were obtained. A large cavity containing a bicovalently bound FAD, tethered via histidyl and cysteinyl linkages, was observed. Substrate docking highlighted how a single residue (Leu251) plays a key role in the accommodation of N-acetylated sugars in the active site. Upon replacement of Leu251 (L251R mutant), an enzyme variant was generated with a drastically modified substrate acceptance profile, tuned toward non-N-acetylated monosaccharides and disaccharides. Furthermore, the activity toward bulkier substrates such as the trisaccharide maltotriose was introduced by this mutation. Due to its advantage of being overexpressed in a bacterial host, NagOx can be considered a promising alternative engineerable biocatalyst for selective oxidation of monosaccharides and oligosaccharides.


Assuntos
Dissacarídeos , Oxirredutases , Oxirredutases/metabolismo , Oxirredução , Dissacarídeos/química , Domínio Catalítico , Monossacarídeos , Flavina-Adenina Dinucleotídeo/metabolismo
5.
Front Microbiol ; 13: 868839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663881

RESUMO

Acid mine drainage (AMD) systems are extremely acidic and are metal-rich formations inhabited by relatively low-complexity communities of acidophiles whose enzymes remain mostly uncharacterized. Indeed, enzymes from only a few AMD sites have been studied. The low number of available cultured representatives and genome sequences of acidophiles inhabiting AMDs makes it difficult to assess the potential of these environments for enzyme bioprospecting. In this study, using naïve and in silico metagenomic approaches, we retrieved 16 esterases from the α/ß-hydrolase fold superfamily with the closest match from uncultured acidophilic Acidobacteria, Actinobacteria (Acidithrix, Acidimicrobium, and Ferrimicrobium), Acidiphilium, and other Proteobacteria inhabiting the Los Rueldos site, which is a unique AMD formation in northwestern Spain with a pH of ∼2. Within this set, only two polypeptides showed high homology (99.4%), while for the rest, the pairwise identities ranged between 4 and 44.9%, suggesting that the diversity of active polypeptides was dominated not by a particular type of protein or highly similar clusters of proteins, but by diverse non-redundant sequences. The enzymes exhibited amino acid sequence identities ranging from 39 to 99% relative to homologous proteins in public databases, including those from other AMDs, thus indicating the potential novelty of proteins associated with a specialized acidophilic community. Ten of the 16 hydrolases were successfully expressed in Escherichia coli. The pH for optimal activity ranged from 7.0 to 9.0, with the enzymes retaining 33-68% of their activities at pH 5.5, which was consistent with the relative frequencies of acid residues (from 54 to 67%). The enzymes were the most active at 30-65°C, retaining 20-61% of their activity under the thermal conditions characterizing Los Rueldos (13.8 ± 0.6°C). The analysis of the substrate specificity revealed the capacity of six hydrolases to efficiently degrade (up to 1,652 ± 75 U/g at pH 8.0 and 30°C) acrylic- and terephthalic-like [including bis(2-hydroxyethyl)-terephthalate, BHET] esters, and these enzymes could potentially be of use for developing plastic degradation strategies yet to be explored. Our assessment uncovers the novelty and potential biotechnological interest of enzymes present in the microbial populations that inhibit the Los Rueldos AMD system.

6.
Angew Chem Int Ed Engl ; 61(37): e202207344, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35734849

RESUMO

Engineering dual-function single polypeptide catalysts with two abiotic or biotic catalytic entities (or combinations of both) supporting cascade reactions is becoming an important area of enzyme engineering and catalysis. Herein we present the development of a PluriZyme, TR2 E2 , with efficient native transaminase (kcat : 69.49±1.77 min-1 ) and artificial esterase (kcat : 3908-0.41 min-1 ) activities integrated into a single scaffold, and evaluate its utility in a cascade reaction. TR2 E2 (pHopt : 8.0-9.5; Topt : 60-65 °C) efficiently converts methyl 3-oxo-4-(2,4,5-trifluorophenyl)butanoate into 3-(R)-amino-4-(2,4,5-trifluorophenyl)butanoic acid, a crucial intermediate for the synthesis of antidiabetic drugs. The reaction proceeds through the conversion of the ß-keto ester into the ß-keto acid at the hydrolytic site and subsequently into the ß-amino acid (e.e. >99 %) at the transaminase site. The catalytic power of the TR2 E2 PluriZyme was proven with a set of ß-keto esters, demonstrating the potential of such designs to address bioinspired cascade reactions.


Assuntos
Aminoácidos , Transaminases , Catálise , Esterases , Ésteres/química , Hidrólise
7.
Toxicol In Vitro ; 76: 105207, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34216723

RESUMO

Acute myeloid leukemia (AML) belongs to a group of hematological cancer whose relapse cases are often associated with chemoresistance that impairs treatment success and contributes to a poor outcome. For this reason, there is an urgent need for the development of new therapeutic strategies. Herein, we explore the combination of venetoclax, a BCL2 inhibitor, and embelin, an XIAP inhibitor, in the AML cell lines. Combinatory treatment of venetoclax and embelin potentiated cytotoxic effects of these drugs, demonstrating that both in combination present lower IC50 values than single treatment of either venetoclax or embelin alone in both cell lines analyzed. The combinatory treatment further increased the apoptosis-inducing properties of both compounds. Computer simulations suggest that embelin binds to both BIR2 and BIR3 domains of XIAP, reinforcing this inhibitory apoptosis protein as an embelin target. Although all AML cell lines presented similar basal levels of XIAP, the combinatory treatment effectively inhibited XIAP expression in OCI-AML3 cells. In conclusion, the inhibition of both apoptosis inhibitory players, BCL2 and XIAP, by venetoclax and embelin, respectively, potentiated their cytotoxic effects in AML cell lines.


Assuntos
Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
8.
Eur J Pharmacol ; 888: 173465, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32814079

RESUMO

Melanoma is a type of skin cancer with an elevated incidence of metastasis and chemoresistance. Such features hamper treatment success of these neoplasms, demanding the search for new therapeutic options. Using a two-step resin-based approach, we recently demonstrated that cytotoxic prodiginines bind to the inhibitor of apoptosis protein, survivin. Herein, we explore the role of survivin in melanoma and whether its modulation is related to the antimelanoma properties of three cytotoxic prodiginines (prodigiosin, cyclononylprodigiosin, and nonylprodigiosin) isolated from marine bacteria. In melanoma patients and cell lines, survivin is overexpressed, and higher levels negatively impact survival. All three prodiginines caused a decrease in cell growth with reduced cytotoxicity after 24 h compared to 72 h treatment, suggesting that low concentrations promote cytostatic effects in SK-Mel-19 (BRAF mutant) and SK-Mel-28 (BRAF mutant), but not in SK-Mel-147 (NRAS mutant). An increase in G1 population was observed after 24 h treatment with prodigiosin and cyclononylprodigiosin in SK-Mel-19. Further studies indicate that prodigiosin induced apoptosis and DNA damage, as detected by increased caspase-3 cleavage and histone H2AX phosphorylation, further arguing for the downregulation of survivin. Computer simulations suggest that prodigiosin and cyclononylprodigiosin bind to the BIR domain of survivin. Moreover, knockdown of survivin increased long-term toxicity of prodigiosin, as observed by reduced clonogenic capacity, but did not alter short-term cytotoxicity. In summary, prodiginine treatment provoked cytostatic rather than cytotoxic effects, cell cycle arrest at G0/G1 phase, induction of apoptosis and DNA damage, downregulation of survivin, and decreased clonogenic capacity in survivin knockdown cells.


Assuntos
Melanoma/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/farmacologia , Survivina/antagonistas & inibidores , Survivina/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Humanos , Melanoma/tratamento farmacológico , Prodigiosina/uso terapêutico , Survivina/genética
9.
Nat Commun ; 9(1): 4657, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405138

RESUMO

Guaianolides are an important class of sesquiterpene lactones with unique biological and pharmaceutical properties. They have been postulated to be derived from germacranolides, but for years no progress has been made in the elucidation of their biosynthesis that requires an unknown cyclization mechanism. Here we demonstrate the isolation and characterization of a cytochrome P450 from feverfew (Tanacetum parthenium), kauniolide synthase. Kauniolide synthase catalyses the formation of the guaianolide kauniolide from the germacranolide substrate costunolide. Unlike most cytochrome P450s, kauniolide synthase combines stereoselective hydroxylation of costunolide at the C3 position, with water elimination, cyclization and regioselective deprotonation. This unique mechanism of action is supported by in silico modelling and docking experiments. The full kauniolide biosynthesis pathway is reconstructed in the heterologous hosts Nicotiana benthamiana and yeast, paving the way for biotechnological production of guaianolide-type sesquiterpene lactones.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Vias Biossintéticas , Ciclização , Sistema Enzimático do Citocromo P-450/química , Hidroxilação , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Tanacetum/enzimologia , Nicotiana/metabolismo
10.
J Chem Inf Model ; 57(8): 2089-2098, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28763207

RESUMO

Combining computational modeling, de novo compound synthesis, and in vitro and cellular assays, we have performed an inhibition study against the enhancer of zeste homolog 2 (EZH2) histone-lysine N-methyltransferase. This enzyme is an important catalytic component of the PRC2 complex whose alterations have been associated with different cancers. We introduce here several tambjamine-inspired derivatives with low micromolar in vitro activity that produce a significant decrease in histone 3 trimethylation levels in cancer cells. We demonstrate binding at the methyl transfer active site, showing, in addition, that the EZH2 isolated crystal structure is capable of being used in molecular screening studies. Altogether, this work provides a successful molecular model that will help in the identification of new specific EZH2 inhibitors and identify a novel class of tambjamine-derived EZH2 inhibitors with promising activities for their use in cancer treatment.

11.
Biophys J ; 112(6): 1147-1156, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355542

RESUMO

In this study, we performed an extensive exploration of the ligand entry mechanism for members of the steroid nuclear hormone receptor family (androgen receptor, estrogen receptor α, glucocorticoid receptor, mineralocorticoid receptor, and progesterone receptor) and their endogenous ligands. The exploration revealed a shared entry path through the helix 3, 7, and 11 regions. Examination of the x-ray structures of the receptor-ligand complexes further showed two distinct folds of the helix 6-7 region, classified as "open" and "closed", which could potentially affect ligand binding. To improve sampling of the helix 6-7 loop, we incorporated motion modes based on principal component analysis of existing crystal structures of the receptors and applied them to the protein-ligand sampling. A detailed comparison with the anisotropic network model (an elastic network model) highlights the importance of flexibility in the entrance region. While the binding (interaction) energy of individual simulations can be used to score different ligands, extensive sampling further allows us to predict absolute binding free energies and analyze reaction kinetics using Markov state models and Perron-cluster cluster analysis, respectively. The predicted relative binding free energies for three ligands binding to the progesterone receptor are in very good agreement with experimental results and the Perron-cluster cluster analysis highlighted the importance of a peripheral binding site. Our analysis revealed that the flexibility of the helix 3, 7, and 11 regions represents the most important factor for ligand binding. Furthermore, the hydrophobicity of the ligand influences the transition between the peripheral and the active binding site.


Assuntos
Método de Monte Carlo , Movimento , Receptores Citoplasmáticos e Nucleares/metabolismo , Cinética , Ligantes , Cadeias de Markov , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Receptores Citoplasmáticos e Nucleares/química , Termodinâmica , Raios X
12.
Chempluschem ; 82(4): 607-614, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31961583

RESUMO

Systems featuring a multi-copper oxidase associated with transition-metal complexes can be used to perform oxidation reactions in mild conditions. Here, a strategy is presented for achieving a controlled orientation of a ruthenium-polypyridyl graft at the surface of a fungal laccase. Laccase variants are engineered with unique surface-accessible lysine residues. Distinct ruthenium-polypyridyl-modified laccases are obtained by the reductive alkylation of lysine residues precisely located relative to the T1 copper centre of the enzyme. In none of these hybrids does the presence of the graft compromise the catalytic efficiency of the enzyme on the substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Furthermore, the efficiency of the hybrids in olefin oxidation coupled to the light-driven reduction of O2 is highly dependent on the location of the graft at the enzyme surface. Simulated RuII -CuII electron coupling values and distances fit well the observed reactivity and could be used to guide future hybrid designs.

13.
ChemMedChem ; 11(8): 928-39, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26553526

RESUMO

The modulation of protein-protein interactions (PPIs) is emerging as a highly promising tool to fight diseases. However, whereas an increasing number of compounds are able to disrupt peptide-mediated PPIs efficiently, the inhibition of domain-domain PPIs appears to be much more challenging. Herein, we report our results related to the interaction between vascular endothelial growth factor (VEGF) and its receptor (VEGFR). The VEGF-VEGFR interaction is a typical domain-domain PPI that is highly relevant for the treatment of cancer and some retinopathies. Our final goal was to identify ligands able to bind VEGF at the region used by the growth factor to interact with its receptor. We undertook an extensive study, combining a variety of experimental approaches, including NMR-spectroscopy-based screening of small organic fragments, peptide libraries, and medicinal plant extracts. The key feature of the successful ligands that emerged from this study was their capacity to expose hydrophobic functional groups able to interact with the hydrophobic hot spots at the interacting VEGF surface patch.


Assuntos
Produtos Biológicos/farmacologia , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sítios de Ligação/efeitos dos fármacos , Produtos Biológicos/síntese química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Oligopeptídeos/síntese química , Oligopeptídeos/química , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Biblioteca de Peptídeos , Ligação Proteica/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/química
14.
Arch Biochem Biophys ; 574: 66-74, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25637654

RESUMO

The first enzyme with dye-decolorizing peroxidase (DyP) activity was described in 1999 from an arthroconidial culture of the fungus Bjerkandera adusta. However, the first DyP sequence had been deposited three years before, as a peroxidase gene from a culture of an unidentified fungus of the family Polyporaceae (probably Irpex lacteus). Since the first description, fewer than ten basidiomycete DyPs have been purified and characterized, but a large number of sequences are available from genomes. DyPs share a general fold and heme location with chlorite dismutases and other DyP-type related proteins (such as Escherichia coli EfeB), forming the CDE superfamily. Taking into account the lack of an evolutionary relationship with the catalase-peroxidase superfamily, the observed heme pocket similarities must be considered as a convergent type of evolution to provide similar reactivity to the enzyme cofactor. Studies on the Auricularia auricula-judae DyP showed that high-turnover oxidation of anthraquinone type and other DyP substrates occurs via long-range electron transfer from an exposed tryptophan (Trp377, conserved in most basidiomycete DyPs), whose catalytic radical was identified in the H2O2-activated enzyme. The existence of accessory oxidation sites in DyP is suggested by the residual activity observed after site-directed mutagenesis of the above tryptophan. DyP degradation of substituted anthraquinone dyes (such as Reactive Blue 5) most probably proceeds via typical one-electron peroxidase oxidations and product breakdown without a DyP-catalyzed hydrolase reaction. Although various DyPs are able to break down phenolic lignin model dimers, and basidiomycete DyPs also present marginal activity on nonphenolic dimers, a significant contribution to lignin degradation is unlikely because of the low activity on high redox-potential substrates.


Assuntos
Basidiomycota/enzimologia , Genoma Fúngico , Peroxidases/metabolismo , Basidiomycota/genética , Domínio Catalítico , Cor , Corantes/metabolismo , Peroxidases/química , Peroxidases/genética , Filogenia , Conformação Proteica , Dobramento de Proteína
15.
J Biol Chem ; 289(49): 33815-25, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25288796

RESUMO

The phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19-His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical Sn2-type methyl transfer from S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.


Assuntos
Ácido Aspártico/química , Etanolaminas/química , Metiltransferases/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Ácido Aspártico/metabolismo , Biocatálise , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminas/metabolismo , Evolução Molecular , Expressão Gênica , Cinética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Filogenia , Plasmodium falciparum/enzimologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
16.
Biophys J ; 106(2): 421-9, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24461017

RESUMO

Computer simulations have been demonstrated to be important for unraveling atomic mechanisms in biological systems. In this study, we show how combining unbiased molecular dynamic simulations with appropriate analysis tools can successfully describe metal-based drug interactions with DNA. To elucidate the noncovalent affinity of cisplatin's family to DNA, we performed extensive all-atom molecular dynamics simulations (3.7 µs total simulation length). The results show that the parent drug, cisplatin, has less affinity to form noncovalent adducts in the major groove than its aquo complexes. Furthermore, the relative position in which the drugs enter the major groove is dependent on the compound's net charge. Based on the simulations, we estimated noncovalent binding free energies through the use of Markov state models. In addition, and to overcome the lack of experimental information, we employed two additional methods: Molecular Mechanics Poisson-Boltzmann Surface Area (MMPB-SA) and steered molecular dynamics with the Jarzynski estimator, with an overall good agreement between the three methods. All complexes show interaction energies below 3 kcal/mol with DNA but the charged hydrolysis products have slightly more favorable binding free energies than the parent drug. Moreover, this study sets the precedent for future unbiased DNA-ligand simulations of more complex binders.


Assuntos
Antineoplásicos/metabolismo , Cisplatino/metabolismo , DNA/metabolismo , Simulação de Dinâmica Molecular , Antineoplásicos/química , Sequência de Bases , Cisplatino/química , DNA/química , DNA/genética , Cinética , Conformação de Ácido Nucleico , Termodinâmica
17.
PLoS One ; 8(5): e62562, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658744

RESUMO

BACKGROUND: A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins) to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions. RESULTS: We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for ß-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for ß-tryptase. Using homology-based modeling (and other protein prediction programs) we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases). CONCLUSIONS: By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level.


Assuntos
Proteínas de Artrópodes/química , Ixodes/metabolismo , Proteínas e Peptídeos Salivares/química , Inibidores de Serina Proteinase/química , Triptases/química , Motivos de Aminoácidos , Animais , Proteínas de Artrópodes/classificação , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Cisteína/química , Cisteína/genética , Humanos , Ixodes/química , Ixodes/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhipicephalus/química , Rhipicephalus/genética , Rhipicephalus/metabolismo , Proteínas e Peptídeos Salivares/classificação , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Homologia de Sequência de Aminoácidos , Inibidores de Serina Proteinase/classificação , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/metabolismo , Triptases/antagonistas & inibidores , Triptases/metabolismo
18.
PLoS One ; 8(2): e57562, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460874

RESUMO

Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s) of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.


Assuntos
Prodigiosina/análogos & derivados , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides , Prodigiosina/química , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Estrutura Terciária de Proteína , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
19.
J Phys Chem B ; 110(39): 19704-10, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17004840

RESUMO

Dihydroorotate dehydrogenase (DHOD) catalyzes the only redox reaction in the pathway for pyrimidine biosynthesis. In this reaction, a proton is transferred from a carbon atom of the substrate to a serine residue, and a hydride is transferred from another carbon atom of the substrate to a cofactor. The deprotonation of the substrate is postulated to involve a proton relay mechanism along a hydrogen bonding pathway in the active site. In this paper, molecular dynamics simulations are used to identify and characterize potential hydrogen bonding pathways that could facilitate the redox reaction catalyzed by human DHOD. The observed pathways involve hydrogen bonding of the active base serine to a water molecule, which is hydrogen bonded to the substrate carboxylate group or a threonine residue. The threonine residue is positioned to enable proton transfer to another water molecule leading to the bulk solvent. The impact of mutating the active base serine to cysteine is also investigated. This mutation is found to increase the average donor-acceptor distances for proton and hydride transfer and to disrupt the hydrogen bonding pathways observed for the wild-type enzyme. These effects could lead to a significant decrease in enzyme activity, as observed experimentally for the analogous mutant in Escherichia coli DHOD.


Assuntos
Ligação de Hidrogênio , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Carbono/química , Cisteína/química , Di-Hidro-Orotato Desidrogenase , Escherichia coli/enzimologia , Humanos , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Oxirredução , Prótons , Serina/química , Solventes , Treonina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA