Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anim Sci Biotechnol ; 15(1): 76, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835065

RESUMO

BACKGROUND: As Holstein calves are susceptible to gastrointestinal disorders during the first week of life, understanding how intestinal immune function develops in neonatal calves is important to promote better intestinal health. Feeding probiotics in early life may contribute to host intestinal health by facilitating beneficial bacteria colonization and developing intestinal immune function. The objective of this study was to characterize the impact of early life yeast supplementation and growth on colon mucosa-attached bacteria and host immune function. RESULTS: Twenty Holstein bull calves received no supplementation (CON) or Saccharomyces cerevisiae boulardii (SCB) from birth to 5 d of life. Colon tissue biopsies were taken within 2 h of life (D0) before the first colostrum feeding and 3 h after the morning feeding at d 5 of age (D5) to analyze mucosa-attached bacteria and colon transcriptome. Metagenome sequencing showed that there was no difference in α and ß diversity of mucosa-attached bacteria between day and treatment, but bacteria related to diarrhea were more abundant in the colon mucosa on D0 compared to D5. In addition, qPCR indicated that the absolute abundance of Escherichia coli (E. coli) decreased in the colon mucosa on D5 compared to D0; however, that of Bifidobacterium, Lactobacillus, and Faecalibacterium prausnitzii, which could competitively exclude E. coli, increased in the colon mucosa on D5 compared to D0. RNA-sequencing showed that there were no differentially expressed genes between CON and SCB, but suggested that pathways related to viral infection such as "Interferon Signaling" were activated in the colon mucosa of D5 compared to D0. CONCLUSIONS: Growth affected mucosa-attached bacteria and host immune function in the colon mucosa during the first 5 d of life in dairy calves independently of SCB supplementation. During early life, opportunistic pathogens may decrease due to intestinal environmental changes by beneficial bacteria and/or host immune function. Predicted activation of immune function-related pathways may be the result of host immune function development or suggest other antigens in the intestine during early life. Further studies focusing on the other antigens and host immune function in the colon mucosa are required to better understand intestinal immune function development.

2.
Front Oncol ; 14: 1255438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38454930

RESUMO

Objective: The aim of this study was to assess the ability of a multiparametric magnetic resonance imaging (MRI)-based radiomics signature model to predict disease-free survival (DFS) in patients with rectal cancer treated by surgery. Materials and methods: We evaluated data of 194 patients with rectal cancer who had undergone radical surgery between April 2016 and September 2021. The mean age of all patients was 62.6 ± 9.7 years (range: 37-86 years). The study endpoint was DFS and 1132 radiomic features were extracted from preoperative MRIs, including contrast-enhanced T1- and T2-weighted imaging and apparent diffusion coefficient values. The study patients were randomly allocated to training (n=97) and validation cohorts (n=97) in a ratio of 5:5. A multivariable Cox regression model was used to generate a radiomics signature (rad score). The associations of rad score with DFS were evaluated using Kaplan-Meier analysis. Three models, namely a radiomics nomogram, radiomics signature, and clinical model, were compared using the Akaike information criterion. Result: The rad score, which was composed of four MRI features, stratified rectal cancer patients into low- and high-risk groups and was associated with DFS in both the training (p = 0.0026) and validation sets (p = 0.036). Moreover, a radiomics nomogram model that combined rad score and independent clinical risk factors performed better (Harrell concordance index [C-index] =0.77) than a purely radiomics signature (C-index=0.73) or clinical model (C-index=0.70). Conclusion: An MRI radiomics model that incorporates a radiomics signature and clinicopathological factors more accurately predicts DFS than does a clinical model in patients with rectal cancer.

3.
Genomics ; 115(5): 110680, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454938

RESUMO

This study aims to characterize changes in the structure and the molecules related to immune function in the colon mucosa in dairy calves during the weaning transition (weaned at week 6 of age). Colon mucosa thickness, measured at week 5 to 8 and 12 of age, decreased for 2 weeks after weaning, but then recovered. Colon mucosa's transcriptome profiling at week 5, 7, and 12 of age was obtained using RNA-sequencing. Functional analysis showed that pathways related to immune function were up-regulated postweaning. A weighted gene co-expression network analysis identified 17 immune function related genes, expressed higher postweaning, which were negatively correlated with colon mucosa thickness, suggesting that these genes may be involved in colon mucosa inflammation and recovery from mucosa thickness decrement during the weaning transition. As such, it is important to determine the function of immune cells in the colon mucosa during the weaning transition in dairy calves.


Assuntos
Colo , Mucosa Intestinal , Animais , Bovinos , Masculino , Desmame , Colo/metabolismo , Perfilação da Expressão Gênica , Imunidade
4.
Front Vet Sci ; 10: 1168237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275608

RESUMO

This study aimed to investigate Pinus koraiensis cone essential oil (PEO) as a methane (CH4) inhibitor and determine its impact on the taxonomic and functional characteristics of the rumen microbiota in goats. A total of 10 growing Korean native goats (Capra hircus coreanae, 29.9 ± 1.58 kg, male) were assigned to different dietary treatments: control (CON; basal diet without additive) and PEO (basal diet +1 g/d of PEO) by a 2 × 2 crossover design. Methane measurements were conducted every 4 consecutive days for 17-20 days using a laser CH4 detector. Samples of rumen fluid and feces were collected during each experimental period to evaluate the biological effects and dry matter (DM) digestibility after PEO oral administration. The rumen microbiota was analyzed via 16S rRNA gene amplicon sequencing. The PEO oral administration resulted in reduced CH4 emission (eructation CH4/body weight0.75, p = 0.079) without affecting DM intake; however, it lowered the total volatile fatty acids (p = 0.041), molar proportion of propionate (p = 0.075), and ammonia nitrogen (p = 0.087) in the rumen. Blood metabolites (i.e., albumin, alanine transaminase/serum glutamic pyruvate transaminase, creatinine, and triglyceride) were significantly affected (p < 0.05) by PEO oral administration. The absolute fungal abundance (p = 0.009) was reduced by PEO oral administration, whereas ciliate protozoa, total bacteria, and methanogen abundance were not affected. The composition of rumen prokaryotic microbiota was altered by PEO oral administration with lower evenness (p = 0.054) observed for the PEO group than the CON group. Moreover, PICRUSt2 analysis revealed that the metabolic pathways of prokaryotic bacteria, such as pyruvate metabolism, were enriched in the PEO group. We also identified the Rikenellaceae RC9 gut group as the taxa potentially contributing to the enriched KEGG modules for histidine biosynthesis and pyruvate oxidation in the rumen of the PEO group using the FishTaco analysis. The entire co-occurrence networks showed that more nodes and edges were detected in the PEO group. Overall, these findings provide an understanding of how PEO oral administration affects CH4 emission and rumen prokaryotic microbiota composition and function. This study may help develop potential manipulation strategies to find new essential oils to mitigate enteric CH4 emissions from ruminants.

5.
Genomics ; 115(5): 110664, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37286013

RESUMO

This study aims to characterize the functional changes of the rumen epithelium associated with ruminal short-chain fatty acid (SCFA) concentration and epithelium-attached microbes during the weaning transition in dairy calves. Ruminal SCFA concentrations were determined, and transcriptome and microbiota profiling in biopsied rumen papillae were obtained from Holstein calves before and after weaning using RNA- and amplicon sequencing. Metabolic pathway analysis showed that pathways related to SCFA metabolism and cell apoptosis were up- and down-regulated postweaning, respectively. Functional analysis showed that genes related to SCFA absorption, metabolism, and protective roles against oxidative stress were positively correlated with ruminal SCFA concentrations. The relative abundance of epithelium-attached Rikenellaceae RC9 gut group and Campylobacter was positively correlated with genes involved in SCFA absorption and metabolism, suggesting that these microbes can cooperatively affect host functions. Future research should examine the contribution of attenuated apoptosis on rumen epithelial functional shifts during the weaning transition.


Assuntos
Microbiota , Rúmen , Animais , Bovinos , Rúmen/metabolismo , Desmame , Epitélio/metabolismo , Ácidos Graxos Voláteis/metabolismo , Perfilação da Expressão Gênica
6.
Front Vet Sci ; 9: 985824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467635

RESUMO

A series of in vitro batch culture incubations were carried out to investigate changes in rumen fermentation characteristics, methane (CH4) production, and microbial composition in response to supplementation with five different red seaweed species (Amphiroa anceps, AANC; Asparagopsis taxiformis, ATAX; Chondracanthus tenellus, CTEN; Grateloupia elliptica, GELL; and Gracilaria parvispora, GPAR). Prior to the incubations, the total flavonoid and polyphenol content of the red seaweed extracts was quantified. The incubated substrate consisted of timothy hay and corn grain [60:40 dry matter (DM) basis]. Treatments were substrate mixtures without seaweed extract (CON) or substrate mixtures supplemented with 0.25 mg/mL of red seaweed extract. Samples were incubated for 6, 12, 24, 36, and 48 h. Each sample was incubated in triplicates in three separate runs. In vitro DM degradability, fermentation parameters (i.e., pH, volatile fatty acids, and ammonia nitrogen), total gas production, and CH4 production were analyzed for all time points. Microbial composition was analyzed using 16S rRNA amplicon sequencing after 24 h of incubation. The highest CH4 reduction (mL/g DM, mL/g digested DM, and % of total gas production) was observed in ATAX (51.3, 50.1, and 51.5%, respectively, compared to CON; P < 0.001) after 12 h of incubation. The other red seaweed extracts reduced the CH4 production (mL/g DM; P < 0.001) in the range of 4.6-35.0% compared to CON after 24 h of incubation. After 24 h of incubation, supplementation with red seaweed extracts tended to increase the molar proportion of propionate (P = 0.057) and decreased the acetate to propionate ratio (P = 0.033) compared to the CON. Abundances of the genus Methanobrevibacter and total methanogens were reduced (P = 0.050 and P = 0.016) by red seaweed extract supplementation. The linear discriminant analysis effect size (P < 0.05, LDA ≥ 2.0) showed that UG Succinivibrionaceae, Anaeroplasma, and UG Ruminococcaceae, which are associated with higher propionate production, starch degradation, and amylase activity were relatively more abundant in red seaweed extracts than in the CON. Our results suggest that supplementation with red seaweed extracts altered the microbiota, leading to the acceleration of propionate production and reduction in CH4 production.

7.
Front Cell Dev Biol ; 10: 946363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204681

RESUMO

Background: Necroptosis plays an important role in inflammation, cancer, and neurodegenerative diseases. In recent years, the number of studies related to necroptosis has increased and research has become increasingly in-depth. This study aimed to summarize the research conducted since 2001 to discover hotspots and trends in the field of necroptosis. Methods: The Web of Science Core database was used to identify global publications on necroptosis from 2001 to 2021. Bibliometric analysis was performed using Rstudio, VOSviewer, and CiteSpace. Results: The number of publications related to necroptosis gradually increased from 2001 to 2021. Vandenabeele P had the most publications at 45. Yuan JY had the most citations at 5,901. Necroptosis research has been dominated by China and Chinese institutions. Cell Death and Disease had the highest number of related publications among the examined journals. Seven of the top 10 most cited papers had more than 500 citations. Necroptosis, cell death, autophagy, injury, cancer, activated B cell nuclear factor kappa-light chain enhancer, and oxidative stress were important keywords in keyword analysis. Recent research has increasingly focused on breast cancer, receptor-interacting serine/threonine protein kinase 1, modulation, pseudokinase mixed lineage kinase domain-like protein, membrane, protection, and cycle. Conclusion: Interest in necroptosis-related research continues to increase steadily, and there is close cooperation between countries and institutions in the field of necroptosis. The study of necroptosis-related molecules and mechanisms, and the relationship between necroptosis and cancer, may be hotspots and directions in future research.

8.
Sci Rep ; 11(1): 24092, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916562

RESUMO

Several seaweed extracts have been reported to have potential antimethanogenic effects in ruminants. In this study, the effect of three brown seaweed species (Undaria pinnatifida, UPIN; Sargassum fusiforme, SFUS; and Sargassum fulvellum, SFUL) on rumen fermentation characteristics, total gas, methane (CH4), carbon dioxide (CO2) production, and microbial populations were investigated using an in vitro batch culture system. Seaweed extract and its metabolites, total flavonoid and polyphenol contents were identified and compared. For the in vitro batch, 0.25 mg∙mL-1 of each seaweed extract were used in 6, 12, 24, 36 and 48 h of incubation. Seaweed extract supplementation decreased CH4 yield and its proportion to total gas production after 12, 24, and 48 h of incubation, while total gas production were not significantly different. Total volatile fatty acid and molar proportion of propionate increased with SFUS and SFUL supplementation after 24 h of incubation, whereas UPIN was not affected. Additionally, SFUS increased the absolute abundance of total bacteria, ciliate protozoa, fungi, methanogenic archaea, and Fibrobacter succinogenes. The relative proportions of Butyrivibrio fibrisolvens, Butyrivibrio proteoclasticus, and Prevotella ruminicola were lower with seaweed extract supplementation, whereas Anaerovibrio lipolytica increased. Thus, seaweed extracts can decrease CH4 production, and alter the abundance of rumen microbial populations.


Assuntos
Dióxido de Carbono/metabolismo , Fermentação/efeitos dos fármacos , Gases/metabolismo , Metano/metabolismo , Extratos Vegetais/farmacologia , Rúmen/metabolismo , Rúmen/microbiologia , Alga Marinha/química , Animais , Ácidos Graxos Voláteis , Técnicas In Vitro , Extratos Vegetais/química , Propionatos , Fatores de Tempo
9.
Anim Microbiome ; 3(1): 32, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892824

RESUMO

BACKGROUND: Volatile fatty acids (VFA) generated from ruminal fermentation by microorganisms provide up to 75% of total metabolizable energy in ruminants. Ruminal pH is an important factor affecting the profile and production of VFA by shifting the microbial community. However, how ruminal pH affects the microbial community and its relationship with expression of genes encoding carbohydrate-active enzyme (CAZyme) for fiber degradation and fermentation are not well investigated. To fill in this knowledge gap, six cannulated Holstein heifers were subjected to a continuous 10-day intraruminal infusion of distilled water or a dilute blend of hydrochloric and phosphoric acids to achieve a pH reduction of 0.5 units in a cross-over design. RNA-seq based transcriptome profiling was performed using total RNA extracted from ruminal liquid and solid fractions collected on day 9 of each period, respectively. RESULTS: Metatranscriptomic analyses identified 19 bacterial phyla with 156 genera, 3 archaeal genera, 11 protozoal genera, and 97 CAZyme transcripts in sampled ruminal contents. Within these, 4 bacteria phyla (Proteobacteria, Firmicutes, Bacteroidetes, and Spirochaetes), 2 archaeal genera (Candidatus methanomethylophilus and Methanobrevibacter), and 5 protozoal genera (Entodinium, Polyplastron, Isotricha, Eudiplodinium, and Eremoplastron) were considered as the core active microbes, and genes encoding for cellulase, endo-1,4-beta- xylanase, amylase, and alpha-N-arabinofuranosidase were the most abundant CAZyme transcripts distributed in the rumen. Rumen microbiota is not equally distributed throughout the liquid and solid phases of rumen contents, and ruminal pH significantly affect microbial ecosystem, especially for the liquid fraction. In total, 21 bacterial genera, 4 protozoal genera, and 6 genes encoding CAZyme were regulated by ruminal pH. Metabolic pathways participated in glycolysis, pyruvate fermentation to acetate, lactate, and propanoate were downregulated by low pH in the liquid fraction. CONCLUSIONS: The ruminal microbiome changed the expression of transcripts for biochemical pathways of fiber degradation and VFA production in response to reduced pH, and at least a portion of the shifts in transcripts was associated with altered microbial community structure.

10.
Trends Microbiol ; 29(8): 713-724, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419590

RESUMO

Recent emerging evidence has revealed that regulatory noncoding RNAs (microRNAs, circular RNAs) modulate host-microbe interactions and they have been proposed as potential biomarkers of the host's response to microbiome-linked pathologies such as cancers, obesity, and neurodegenerative diseases. Interactions between microRNAs and circular RNAs, however, increase the complexity of the mechanisms that modulate host-microbe interactions. Current knowledge on these noncoding RNAs (ncRNAs) is mainly generated from well controlled germ-free or knockout (small) animal models. Application of such knowledge to effective modulation outcomes in humans (and livestock) is challenging due to the complex nature of microbiome-linked pathologies in larger outbred animals that constantly interact with the changing environment. This review critically discusses the findings of regulatory noncoding RNAs and their roles in microbiome-linked pathologies in small and large animals and provides insights on their roles as potential therapeutic agents to improve human (and livestock) health.


Assuntos
Regulação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Microbiota/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Animais , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Microbiota/fisiologia , RNA Circular/genética , RNA Circular/metabolismo
11.
Plant Biotechnol J ; 19(6): 1216-1239, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33440072

RESUMO

In grape, MYBA1 and MYBA2 at the colour locus are the major genetic determinants of grape skin colour, and the mutation of two functional genes (VvMYBA1 and VvMYBA2) from these loci leads to white skin colour. This study aimed to elucidate the regulation of grape berry coloration by isolating and characterizing VvMYBA2w and VvMYBA2r alleles. The overexpression of VvMYBA2r up-regulated the expression of anthocyanin biosynthetic genes and resulted in higher anthocyanin accumulation in transgenic tobacco than wild-type (WT) plants, especially in flowers. However, the ectopic expression of VvMYBA2w inactivated the expression of anthocyanin biosynthetic genes and could not cause obvious phenotypic modulation in transgenic tobacco. Unlike in VvMYBA2r, CA dinucleotide deletion shortened the C-terminal transactivation region and disrupted the transcriptional activation activity of VvMYBA2w. The results indicated that VvMYBA2r positively regulated anthocyanin biosynthesis by forming the VvMYBA2r-VvMYCA1-VvWDR1 complex, and VvWDR1 enhanced anthocyanin accumulation by interacting with the VvMYBA2r-VvMYCA1 complex; however, R44 L substitution abolished the interaction of VvMYBA2w with VvMYCA1. Meanwhile, both R44 L substitution and CA dinucleotide deletion seriously affected the efficacy of VvMYBA2w to regulate anthocyanin biosynthesis, and the two non-synonymous mutations were additive in their effects. Investigation of the colour density and MYB haplotypes of 213 grape germplasms revealed that dark-skinned varieties tended to contain HapC-N and HapE2, whereas red-skinned varieties contained high frequencies of HapB and HapC-Rs. Regarding ploidy, the higher the number of functional alleles present in a variety, the darker was the skin colour. In summary, this study provides insight into the roles of VvMYBA2r and VvMYBA2w alleles and lays the foundation for the molecular breeding of grape varieties with different skin colour.


Assuntos
Vitis , Alelos , Antocianinas , Embaralhamento de DNA , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentação da Pele , Vitis/genética , Vitis/metabolismo
12.
Microbiome ; 8(1): 64, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398126

RESUMO

BACKGROUND: Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels. RESULTS: Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host's metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY. CONCLUSIONS: These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract.


Assuntos
Lactação , Metaboloma , Microbiota , Leite , Rúmen/microbiologia , Animais , Bovinos , Indústria de Laticínios , Feminino , Prevotella/isolamento & purificação , Prevotella/metabolismo
13.
BMC Plant Biol ; 19(1): 111, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898085

RESUMO

BACKGROUND: Grape (Vitis vinifera) is highly sensitive to gibberellin (GA), which effectively induce grape parthenocarpy. Studies showed that miR160s and their target AUXIN RESPONSIVE FACTOR (ARF) responding hormones are indispensable for various aspects of plant growth and development, but their functions in GA-induced grape parthenocarpy remain elusive. RESULTS: In this study, the morphological changes during flower development in response to GA treatments were examined in the 'Rosario Bianco' cultivar. The precise sequences of VvmiR160a/b/c/d/e and their VvARF10/16/17 target genes were cloned, sequenced and characterized. The phylogenetic relationship and intron-exon structure of VvARFs and other ARF family members derived from different species were investigated. All VvmiR160s (except VvmiR160b) and VvARF10/16/17 had the common cis-elements responsive to GA, which support their function in GA-mediated grape parthenocarpy. The cleavage role of VvmiR160s-mediated VvARF10/16/17 was verified in grape flowers. Moreover, spatio-temporal expression analysis demonstrated that among VvmiR160 family, VvmiR160a/b/c highly expressed at late stage of flower/berry development, while VvARF10/16/17showed a reverse expression trend. Interestingly, GA exhibited a long-term effect through inducing the expression of VvmiR160a/b/c/e to increase their cleavage product accumulations from 5 to 9 days after treatment, but GA enhanced the expressions of VvARF10/16/17 only at short term. Pearson correlation analysis based on expression data revealed a negative correlation between VvmiR160a/b/c and VvARF10/16/17 in flowers not berries during GA-induced grape parthenocarpy. CONCLUSIONS: This work demonstrated that the negative regulation of VvARF10/16/17 expression by VvmiR160a/b/c as key regulatory factors is critical for GA-mediated grape parthenocarpy, and provide significant implications for molecular breeding of high-quality seedless berry.


Assuntos
Frutas/crescimento & desenvolvimento , Giberelinas/farmacologia , MicroRNAs/genética , Proteínas de Plantas/genética , Vitis/genética , Mapeamento Cromossômico , Flores/efeitos dos fármacos , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA de Plantas , Sementes/genética , Análise Espaço-Temporal , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Vitis/efeitos dos fármacos , Vitis/fisiologia
14.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658973

RESUMO

A lack of information on the intestinal microbiome of neonatal calves prevents the use of microbial intervention strategies to improve calf gut health. This study profiled the taxonomic and functional composition of the small intestinal luminal microbiome of neonatal calves using whole-genome sequencing of the metagenome, aiming to understand the dynamics of microbial establishment during early life. Despite highly individualized microbial communities, we identified two distinct taxonomy-based clusters from the collective luminal microbiomes comprising a high level of either Lactobacillus or Bacteroides Among the clustered microbiomes, Lactobacillus-dominant ileal microbiomes had significantly lower abundances of Bacteroides, Prevotella, Roseburia, Ruminococcus, and Veillonella compared to the Bacteroides-dominated ileal microbiomes. In addition, the upregulated ileal genes of the Lactobacillus-dominant calves were related to leukocyte and lymphocyte chemotaxis, the cytokine/chemokine-mediated signaling pathway, and inflammatory responses, while the upregulated ileal genes of the Bacteroides-dominant calves were related to cell adhesion, response to stimulus, cell communication and regulation of mitogen-activated protein kinase cascades. The functional profiles of the luminal microbiomes also revealed two distinct clusters consisting of functions related to either high protein metabolism or sulfur metabolism. A lower abundance of Bifidobacterium and a higher abundance of sulfur-reducing bacteria (SRB) were observed in the sulfur metabolism-dominant cluster (0.2% ± 0.1%) compared to the protein metabolism-dominant cluster (12.6% ± 5.7%), suggesting an antagonistic relationship between SRB and Bifidobacterium, which both compete for cysteine. These distinct taxonomic and functional clusters may provide a framework to further analyze interactions between the intestinal microbiome and the immune function and health of neonatal calves.IMPORTANCE Dietary interventions to manipulate neonatal gut microbiota have been proposed to generate long-term impacts on hosts. Currently, our understanding of the early gut microbiome of neonatal calves is limited to 16S rRNA gene amplicon based microbial profiling, which is a barrier to developing dietary interventions to improve calf gut health. The use of a metagenome sequencing-based approach in the present study revealed high individual animal variation in taxonomic and functional abundance of intestinal microbiome and potential impacts of early microbiome on mucosal immune responses during the preweaning period. During this developmental period, age- and diet-related changes in microbial diversity, richness, density, and the abundance of taxa and functions were observed. A correlation-based approach to further explore the individual animal variation revealed potential enterotypes that can be linked to calf gut health, which may pave the way to developing strategies to manipulate the microbiome and improve calf health.


Assuntos
Animais Recém-Nascidos/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Intestino Delgado/microbiologia , Animais , Bactérias/genética , Bovinos , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Masculino , Metagenoma , Filogenia , RNA Ribossômico 16S/genética
15.
Front Genet ; 10: 1276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921312

RESUMO

The TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) protein, belonging to a plant-specific transcription factors (TFs) family, participates in the control of plant growth and development by regulating cell proliferation. Until now, a comprehensive study of concerning the TCP gene family and their roles in grapevine (Vitis vinifera L.) has not been completed. Using bioinformatics approaches, 17 VvTCP genes were identified and further classified into two classes, designated class I (PCF subclass) and class II (CIN and CYC/TB1 subclass), which was further supported by exon-intron organizations and conserved motif analysis. Promoter analysis demonstrated that VvTCPs have numerous cis-acting elements related to plant growth and development, phytohormone, and abiotic/biotic stress responses. The singleton duplication of grapevine TCP genes contributed to this gene family expansion. The syntenic analyses among Vitis vinifera, Arabidopsis, and Oryza sativa showed that these genes located in corresponding syntenic blocks arose before the divergence of V. vinifera, Arabidopsis, and O. sativa. The expression levels of 17 VvTCPs were determined in different tissues and fruit developmental stages, and abscisic acid (ABA) treatment. Seventeen VvTCPs exhibited distinct tissue-specific expression patterns, potentially illustrating the functional divergence of VvTCPs in all tested tissues. Eleven VvTCPs were down-regulated in five berry developmental stages, while three VvTCPs were up-regulated. Additionally, many members were strongly modulated by ABA treatment, suggesting these VvTCPs have important and diverse regulatory roles in ABA treatment. Our results provide valuable information on the evolution and functions of the VvTCPs, pave the way for further functional verification of these VvTCPs in grapevine.

16.
Sci Rep ; 6: 24964, 2016 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102525

RESUMO

The molecular regulatory mechanisms of host responses to Mycobacterium avium subsp. paratuberculosis (MAP) infection during the early subclinical stage are still not clear. In this study, surgically isolated ileal segments in newborn calves (n = 5) were used to establish in vivo MAP infection adjacent to an uninfected control intestinal compartment. RNA-Seq was used to profile the whole transcriptome (mRNAs) and the microRNAome (miRNAs) of ileal tissues collected at one-month post-infection. The most related function of the differentially expressed mRNAs between infected and uninfected tissues was "proliferation of endothelial cells", indicating that MAP infection may lead to the over-proliferation of endothelial cells. In addition, 46.2% of detected mRNAs displayed alternative splicing events. The pre-mRNA of two genes related to macrophage maturation (monocyte to macrophage differentiation-associated) and lysosome function (adenosine deaminase) showed differential alternative splicing events, suggesting that specific changes in the pre-mRNA splicing sites may be a mechanism by which MAP escapes host immune responses. Moreover, 9 miRNAs were differentially expressed after MAP infection. The integrated analysis of microRNAome and transcriptome revealed that these miRNAs might regulate host responses to MAP infection, such as "proliferation of endothelial cells" (bta-miR-196 b), "bacteria recognition" (bta-miR-146 b), and "regulation of the inflammatory response" (bta-miR-146 b).


Assuntos
Interações Hospedeiro-Patógeno , Íleo/patologia , MicroRNAs/análise , Mycobacterium avium subsp. paratuberculosis/crescimento & desenvolvimento , Paratuberculose/patologia , Precursores de RNA/metabolismo , Splicing de RNA , Animais , Bovinos , Proliferação de Células , Células Endoteliais/patologia , Perfilação da Expressão Gênica , Evasão da Resposta Imune
17.
Epilepsy Behav ; 56: 165-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26896820

RESUMO

OBJECTIVE: Autoimmune encephalitis associated with antibodies to leucine-rich glioma inactivated 1 (LGI1) has recently been identified and is characterized by an acute to subacute onset of cognitive impairment and convulsion, faciobrachial dystonic seizures (FBDSs), and psychiatric disturbances. This study analyzed the clinical characteristics and outcomes of 10 patients with LGI1 antibody encephalitis in order to further understand this disease and to improve its therapeutic strategies. METHODS: Between January 2013 and March 2015, we identified 10 patients with LGI1 antibody encephalitis. We retrospectively analyzed the clinical details, laboratory results, electrophysiological and imaging findings, and the treatment outcomes. RESULTS: All patients tested had LGI1 antibodies. Immunotherapy was effective in all patients. Seizures in patients with FBDS showed a poor response to antiepileptic drugs. Two patients examined by magnetoencephalogram (MEG) during the acute disease phase showed a small quantity of spike-wave dipoles in the temporal lobe close to the lateral fissure and insular lobe. CONCLUSION: Patients with LGI1 antibody encephalitis responded well to immunotherapy. We speculate that FBDS is likely a form of insular epilepsy.


Assuntos
Autoanticorpos/sangue , Doenças Autoimunes/sangue , Doenças Autoimunes/diagnóstico , Encefalite Límbica/sangue , Encefalite Límbica/diagnóstico , Proteínas/metabolismo , Adulto , Idoso , Anticonvulsivantes/uso terapêutico , Doenças Autoimunes/terapia , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Imunoterapia/tendências , Peptídeos e Proteínas de Sinalização Intracelular , Encefalite Límbica/terapia , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
18.
Vet Immunol Immunopathol ; 160(1-2): 107-17, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24841487

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease (JD), a chronic granulomatous intestinal inflammation of ruminants. Current diagnostic tools lack sensitivity to detect JD early in infection; therefore, alternatives are desired. The objective was to identify potential biomarkers in whole blood of high- and low-dose (LD) MAP-challenged Holstein-Friesian calves 3 months after inoculation. Infected calves were designated MAP-positive using the IFN-γ release assay. Differential expression of transcripts in whole blood was compared between non-infected controls and HD, as well as LD calves, using the Affymetrix(®) GeneChip(®) Bovine Genome Array. Microarray data were analyzed using RMA and PLIER algorithms; 296 transcripts were differentially expressed (17 had ≥ 1.5 fold change). The HD and LD calves had differential gene expression profiles for up to 80% of differentially expressed genes. Pathway analyses using Ingenuity Pathway Analysis (IPA(®)) indicated inhibition of several defence mechanisms, including apoptosis, leukocyte and lymphocyte trafficking, overall repression of gene expression and potentially hydrogen peroxide production in macrophages. Further validation using qPCR verified increased expression of CD46, ICOS, and CEP350, but decreased expression of CTLA4, YARS, and PARVB in infected calves. Additionally, a comparison of seropositive and seronegative infected calves identified transcripts predictive of seroconversion. We concluded that IL6ST/gp130 and CD22 may have important roles in the induction of antibodies against MAP. Putative biomarkers of early MAP infection with roles in immune responses were identified; in addition, the importance of infective dose on biomarkers was determined.


Assuntos
Doenças dos Bovinos/metabolismo , Mycobacterium avium subsp. paratuberculosis , Paratuberculose/metabolismo , Transcriptoma , Animais , Biomarcadores , Bovinos , Doenças dos Bovinos/microbiologia , Masculino , Análise de Componente Principal
19.
BMC Genomics ; 15: 181, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24606609

RESUMO

BACKGROUND: MicroRNAs (miRNAs) can post-transcriptionally regulate gene expression and have been shown to be critical regulators to the fine-tuning of epithelial immune responses. However, the role of miRNAs in bovine responses to E. coli and S. aureus, two mastitis causing pathogens, is not well understood. RESULTS: The global expression of miRNAs in bovine mammary epithelial cells (MAC-T cells) challenged with and without heat-inactivated Staphylococcus aureus (S. aureus) or Escherichia coli (E. coli) bacteria at 0, 6, 12, 24, and 48 hr was profiled using RNA-Seq. A total of 231 known bovine miRNAs were identified with more than 10 counts per million in at least one of 13 libraries and 5 miRNAs including bta-miR-21-5p, miR-27b, miR-22-3p, miR-184 and let-7f represented more than 50% of the abundance. One hundred and thirteen novel miRNAs were also identified and more than one third of them belong to the bta-miR-2284 family. Seventeen miRNAs were significantly (P < 0.05) differentially regulated by the presence of pathogens. E. coli initiated an earlier regulation of miRNAs (6 miRNAs differentially regulated within the first 6 hrs post challenge as compared to 1 miRNA for S. aureus) while S. aureus presented a delayed response. Five differentially expressed miRNAs (bta-miR-184, miR-24-3p, miR-148, miR-486 and let-7a-5p) were unique to E. coli while four (bta-miR-2339, miR-499, miR-23a and miR-99b) were unique to S. aureus. In addition, our study revealed a temporal differential regulation of five miRNAs (bta-miR-193a-3p, miR-423-5p, miR-30b-5p, miR-29c and miR-un116) in unchallenged cells. Target gene predictions of pathogen differentially expressed miRNAs indicate a significant enrichment in gene ontology functional categories in development/cellular processes, biological regulation as well as cell growth and death. Furthermore, target genes were significantly enriched in several KEGG pathways including immune system, signal transduction, cellular process, nervous system, development and human diseases. CONCLUSION: Using next-generation sequencing, our study identified a pathogen directed differential regulation of miRNAs in MAC-T cells with roles in immunity and development. Our study provides a further confirmation of the involvement of mammary epithelia cells in contributing to the immune response to infecting pathogens and suggests the potential of miRNAs to serve as biomarkers for diagnosis and development of control measures.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Glândulas Mamárias Animais/citologia , MicroRNAs/genética , Transcriptoma , Animais , Bovinos , Biologia Computacional/métodos , Escherichia coli , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Anotação de Sequência Molecular , Staphylococcus aureus , Fatores de Tempo
20.
J Surg Res ; 178(1): 147-54, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22482772

RESUMO

BACKGROUND: Crohn's disease recurrence after an ileocecal resection is common; yet, its pathophysiology is poorly understood and available treatment is suboptimal. The purpose of this study was to examine the bacterial, local, and systemic immune changes that follow ileocolonic anastomosis in a rodent model of Crohn's disease, the interleukin-10 gene-deficient (IL-10 null) mice. MATERIALS AND METHODS: We divided wild-type and IL-10 null mice into three treatment groups: ileocolonic anastomosis, sham operation (ileo-ileal anastomosis), and control group without an operation. We sacrificed mice at 6 and 15 wks after the operation. At 6 wks, we assessed bacterial changes using the denaturing gel electrophoresis and similarity coefficient calculation. At both time points, we examined the small bowel for inflammation and fibrosis with histology. We measured the interferon gamma secretion by splenocytes stimulated with gastrointestinal bacterial antigens and splenocyte composition as a marker of systemic response. RESULTS: At 6 wks, ileocolonic anastomosis resulted in increased similarity in bacterial species between the ileum and colon. The ileocolonic anastomosis did not lead to significant inflammation in the small intestine, but it resulted in an increased collagen deposition in all animals undergoing surgery, the most pronounced fibrosis of which was present in IL-10 null mice 15 wks after ileocolonic anastomosis. Furthermore, this was associated with significantly increased interferon gamma secretion by bacterial antigen-stimulated splenocytes and a decreased number of CD11+ cells in the same experimental group. CONCLUSIONS: Ileocolonic anastomosis leads to bacterial changes in the terminal ileum. In the genetically susceptible host, it is associated with small bowel fibrosis and systemic immune alterations. The composition of immune cells in the spleen is altered and splenocytes hypersecrete proinflammatory cytokine (interferon gamma) when challenged with gastrointestinal bacterial antigens.


Assuntos
Doença de Crohn , Enterite , Interleucina-10/genética , Interleucina-10/imunologia , Anastomose Cirúrgica/métodos , Animais , Colo/imunologia , Colo/patologia , Colo/cirurgia , Doença de Crohn/imunologia , Doença de Crohn/patologia , Doença de Crohn/cirurgia , Modelos Animais de Doenças , Enterite/imunologia , Enterite/patologia , Enterite/cirurgia , Fibrose/patologia , Íleo/imunologia , Íleo/patologia , Íleo/cirurgia , Interferon gama/imunologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Complicações Pós-Operatórias/imunologia , Complicações Pós-Operatórias/patologia , Recidiva , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA