Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Am J Physiol Renal Physiol ; 327(1): F146-F157, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779753

RESUMO

17ß-Hydroxysteroid dehydrogenase-13 (HSD17B13), a newly identified lipid droplet-associated protein, plays an important role in the development of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Emerging evidence demonstrates that NASH is an independent risk factor for chronic kidney disease, which is frequently accompanied by renal lipid accumulation. In addition, the HSD17B13 rs72613567 variant is associated with lower levels of albuminuria in patients with biopsy-proven NAFLD. At present, the role of HSD17B13 in lipid accumulation in the kidney is unclear. This study utilized bioinformatic and immunostaining approaches to examine the expression and localization of HSD17B13 along the mouse urinary tract. We found that HSD17B13 is constitutively expressed in the kidney, ureter, and urinary bladder. Our findings reveal for the first time, to our knowledge, the precise localization of HSD17B13 in the mouse urinary system, providing a basis for further studying the pathogenesis of HSD17B13 in various renal and urological diseases.NEW & NOTEWORTHY HSD17B13, a lipid droplet-associated protein, is crucial in nonalcoholic fatty liver disease (NAFLD) development. NAFLD also independently raises chronic kidney disease (CKD) risk, often with renal lipid buildup. However, HSD17B13's role in CKD-related lipid accumulation is unclear. This study makes the first effort to examine HSD17B13 expression and localization along the urinary system, providing a basis for exploring its physiological and pathophysiological roles in the kidney and urinary tract.


Assuntos
17-Hidroxiesteroide Desidrogenases , Camundongos Endogâmicos C57BL , Animais , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Masculino , Camundongos , Sistema Urinário/metabolismo , Sistema Urinário/patologia , Rim/metabolismo , Rim/patologia
2.
Sheng Li Xue Bao ; 76(2): 329-340, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658381

RESUMO

Chronic liver disease (CLD) is a major global health burden in terms of growing morbidity and mortality. Although many conditions can cause CLD, leading to cirrhosis and hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common culprits. Prostaglandin E2 (PGE2), produced in the liver, is an important lipid mediator derived from the ω-6 polyunsaturated fatty acid, arachidonic acid, and plays a critical role in hepatic homeostasis. The physiological effects of PGE2 are mediated through four classes of E-type prostaglandin (EP) receptors, namely EP1, EP2, EP3 and EP4. In recent years, an increasing number of studies has been done to clarify the effects of PGE2 and EP receptors in regulating liver function and the pathogenesis of CLD to create a new potential clinical impact. In this review, we overview the biosynthesis and regulation of PGE2 and discuss the role of its synthesizing enzymes and receptors in the maintenance of normal liver function and the development and progress of CLD. We also discuss the potential of the PGE2-EP receptors system in treating CLD with various etiologies.


Assuntos
Dinoprostona , Hepatopatias , Receptores de Prostaglandina E , Humanos , Dinoprostona/metabolismo , Receptores de Prostaglandina E/metabolismo , Receptores de Prostaglandina E/fisiologia , Hepatopatias/metabolismo , Doença Crônica , Animais , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
3.
Sci China Life Sci ; 67(2): 360-378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37815699

RESUMO

Peritoneal fibrosis together with increased capillaries is the primary cause of peritoneal dialysis failure. Mesothelial cell loss is an initiating event for peritoneal fibrosis. We find that the elevated glucose concentrations in peritoneal dialysate drive mesothelial cell pyroptosis in a manner dependent on caspase-3 and Gasdermin E, driving downstream inflammatory responses, including the activation of macrophages. Moreover, pyroptosis is associated with elevated vascular endothelial growth factor A and C, two key factors in vascular angiogenesis and lymphatic vessel formation. GSDME deficiency mice are protected from high glucose induced peritoneal fibrosis and ultrafiltration failure. Application of melatonin abrogates mesothelial cell pyroptosis through a MT1R-mediated action, and successfully reduces peritoneal fibrosis and angiogenesis in an animal model while preserving dialysis efficacy. Mechanistically, melatonin treatment maintains mitochondrial integrity in mesothelial cells, meanwhile activating mTOR signaling through an increase in the glycolysis product dihydroxyacetone phosphate. These effects together with quenching free radicals by melatonin help mesothelial cells maintain a relatively stable internal environment in the face of high-glucose stress. Thus, Melatonin treatment holds some promise in preserving mesothelium integrity and in decreasing angiogenesis to protect peritoneum function in patients undergoing peritoneal dialysis.


Assuntos
Melatonina , Fibrose Peritoneal , Humanos , Animais , Camundongos , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/prevenção & controle , Fibrose Peritoneal/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Piroptose , Ultrafiltração , Células Epiteliais , Glucose/farmacologia , Fibrose
4.
Acta Pharmacol Sin ; 44(10): 2075-2090, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37344564

RESUMO

Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with various etiologies, which seriously affects the structure and function of the kidney. Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily and plays a critical role in regulating the genes related to xenobiotic and endobiotic metabolism in mammals. Previous studies show that PXR is expressed in the kidney and has protective effect against acute kidney injury (AKI). In this study, we investigated the role of PXR in CKD. Adenine diet-induced CKD (AD) model was established in wild-type and PXR humanized (hPXR) mice, respectively, which were treated with pregnenolone-16α-carbonitrile (PCN, 50 mg/kg, twice a week for 4 weeks) or rifampicin (RIF, 10 mg·kg-1·d-1, for 4 weeks). We showed that both PCN and RIF, which activated mouse and human PXR, respectively, improved renal function and attenuated renal fibrosis in the two types of AD mice. In addition, PCN treatment also alleviated renal fibrosis in unilateral ureter obstruction (UUO) mice. On the contrary, PXR gene deficiency exacerbated renal dysfunction and fibrosis in both adenine- and UUO-induced CKD mice. We found that PCN treatment suppressed the expression of the profibrotic Wnt7a and ß-catenin in AD mice and in cultured mouse renal tubular epithelial cells treated with TGFß1 in vitro. We demonstrated that PXR was colocalized and interacted with p53 in the nuclei of tubular epithelial cells. Overexpression of p53 increased the expression of Wnt7a, ß-catenin and its downstream gene fibronectin. We further revealed that p53 bound to the promoter of Wnt7a gene to increase its transcription and ß-catenin activation, leading to increased expression of the downstream profibrotic genes, which was inhibited by PXR. Taken together, PXR activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/ß-catenin signaling pathway.


Assuntos
Receptor de Pregnano X , Insuficiência Renal Crônica , Via de Sinalização Wnt , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Fibrose , Mamíferos/metabolismo , Receptor de Pregnano X/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Rifampina/farmacologia
5.
J Mol Cell Cardiol ; 181: 15-30, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37244057

RESUMO

AIMS: Pulmonary arterial hypertension (PAH) is a progressive and lethal disease characterized by continuous proliferation of pulmonary arterial smooth muscle cell (PASMCs) and increased pulmonary vascular remodeling. Maresin-1 (MaR1) is a member of pro-resolving lipid mediators and exhibits protective effects on various inflammation-related diseases. Here we aimed to study the role of MaR1 in the development and progression of PAH and to explore the underlying mechanisms. METHODS AND RESULTS: We evaluated the effect of MaR1 treatment on PAH in both monocrotaline (MCT)-induced rat and hypoxia+SU5416 (HySu)-induced mouse models of pulmonary hypertension (PH). Plasma samples were collected from patients with PAH and rodent PH models to examine MaR1 production. Specific shRNA adenovirus or inhibitors were used to block the function of MaR1 receptors. The data showed that MaR1 significantly prevented the development and blunted the progression of PH in rodents. Blockade of the function of MaR1 receptor ALXR, but not LGR6 or RORα, with BOC-2, abolished the protective effect of MaR1 against PAH development and reduced its therapeutic potential. Mechanistically, we demonstrated that the MaR1/ALXR axis suppressed hypoxia-induced PASMCs proliferation and alleviated pulmonary vascular remodeling by inhibiting mitochondrial accumulation of heat shock protein 90α (HSP90α) and restoring mitophagy. CONCLUSION: MaR1 protects against PAH by improving mitochondrial homeostasis through ALXR/HSP90α axis and represents a promising target for PAH prevention and treatment.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Ratos , Animais , Hipertensão Arterial Pulmonar/metabolismo , Proteínas de Choque Térmico/efeitos adversos , Proteínas de Choque Térmico/metabolismo , Remodelação Vascular , Proliferação de Células , Células Cultivadas , Hipertensão Pulmonar Primária Familiar , Hipertensão Pulmonar/metabolismo , Artéria Pulmonar , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Monocrotalina , Modelos Animais de Doenças
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166755, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196860

RESUMO

Renal fibrosis (RF) is a common pathway leading to chronic kidney disease (CKD), which lacks effective treatment. While estrogen receptor beta (ERß) is known to be present in the kidney, its role in RF remains unclear. The present study aimed to investigate the role and underlying mechanism of ERß during RF progression in patients and animal models with CKD. We found that ERß was highly expressed in the proximal tubular epithelial cells (PTECs) in healthy kidneys but its expression was largely lost in patients with immunoglobin A nephropathy (IgAN) and in mice with unilateral ureter obstruction (UUO) and subtotal nephrectomy (5/6Nx). ERß deficiency markedly exacerbated, whereas ERß activation by WAY200070 and DPN attenuated RF in both UUO and 5/6Nx mouse models, suggesting a protective role of ERß in RF. In addition, ERß activation inhibited TGF-ß1/Smad3 signaling, while loss of renal ERß was associated with overactivation of the TGF-ß1/Smad3 pathway. Furthermore, deletion or pharmacological inhibition of Smad3 prevented the loss of ERß and RF. Mechanistically, activation of ERß competitively inhibited the association of Smad3 with the Smad-binding element, thereby downregulating the transcription of the fibrosis-related genes without altering Smad3 phosphorylation in vivo and in vitro. In conclusion, ERß exerts a renoprotective role in CKD by blocking the Smad3 signaling pathway. Thus, ERß may represent as a promising therapeutic agent for RF.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Camundongos , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Fibrose , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
7.
Front Mol Biosci ; 10: 1203269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251080

RESUMO

In 2012, researchers proposed a non-apoptotic, iron-dependent form of cell death caused by lipid peroxidation called ferroptosis. During the past decade, a comprehensive understanding of ferroptosis has emerged. Ferroptosis is closely associated with the tumor microenvironment, cancer, immunity, aging, and tissue damage. Its mechanism is precisely regulated at the epigenetic, transcriptional, and post-translational levels. O-GlcNAc modification (O-GlcNAcylation) is one of the post-translational modifications of proteins. Cells can modulate cell survival in response to stress stimuli, including apoptosis, necrosis, and autophagy, through adaptive regulation by O-GlcNAcylation. However, the function and mechanism of these modifications in regulating ferroptosis are only beginning to be understood. Here, we review the relevant literature within the last 5 years and present the current understanding of the regulatory function of O-GlcNAcylation in ferroptosis and the potential mechanisms that may be involved, including antioxidant defense system-controlled reactive oxygen species biology, iron metabolism, and membrane lipid peroxidation metabolism. In addition to these three areas of ferroptosis research, we examine how changes in the morphology and function of subcellular organelles (e.g., mitochondria and endoplasmic reticulum) involved in O-GlcNAcylation may trigger and amplify ferroptosis. We have dissected the role of O-GlcNAcylation in regulating ferroptosis and hope that our introduction will provide a general framework for those interested in this field.

8.
World J Gastroenterol ; 29(1): 75-95, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36683713

RESUMO

Nonalcoholic fatty liver disease (NAFLD), a leading chronic disease worldwide, affects approximately a quarter of the global population. Nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD and is more likely to progress to liver fibrosis than simple steatosis. NASH is also identified as the most rapidly growing cause of hepatocellular carcinoma. Although in the past decade, several phase II/III clinical trials have shown promising results in the use of novel drugs targeting lipid synthase, farnesoid X receptor signaling, peroxisome proliferator-activated receptor signaling, hepatocellular injury, and inflammatory signaling, proven pharmaceutical agents to treat NASH are still lacking. Thus, continuous exploration of the mechanism underlying the pathogenesis of NAFLD and the identification of novel therapeutic targets remain urgent tasks in the field. In the current review, we summarize studies reported in recent years that not only provide new insights into the mechanisms of NAFLD development but also explore the possibility of treating NAFLD by targeting newly identified signaling pathways. We also discuss evidence focusing on the intrahepatic targets involved in the pathogenesis of NAFLD as well as extrahepatic targets affecting liver metabolism and function.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/patologia , Cirrose Hepática/metabolismo , Transdução de Sinais , Neoplasias Hepáticas/patologia , Fígado/patologia
9.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166572, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252941

RESUMO

Recent studies suggest that deletion of the core clock gene Bmal1 in the kidney has a significant influence on renal physiological functions. However, the role of renal Bmal1 in chronic kidney disease (CKD) remains poorly understood. Here by generating mice lacking Bmal1 in proximal tubule (Bmal1flox/flox-KAP-Cre+, ptKO) and inducing CKD with the adenine diet model, we found that lack of Bmal1 in proximal tubule did not alter renal water and electrolyte homeostasis. However, adenine-induced renal injury indexes, including blood urea nitrogen, serum creatinine, and proteinuria, were markedly augmented in the ptKO mice. The ptKO kidneys also developed aggravated tubulointerstitial fibrosis and epithelial-mesenchymal transformation. Mechanistically, RNAseq analysis revealed significant downregulation of the expression of genes related to energy and substance metabolism, in particular fatty acid oxidation and glutathione/homocysteine metabolism, in the ptKO kidneys. Consistently, the renal contents of ATP and glutathione were markedly reduced in the ptKO mice, suggesting the disruption of cellular metabolic homeostasis. Moreover, we demonstrated that Bmal1 can activate the transcription of cystathionine ß-synthase (CBS), a key enzyme for homocysteine metabolism and glutathione biosynthesis, through direct recruitment to the E-box motifs of its promoter. Supporting the in vivo findings, knockdown of Bmal1 in cultured proximal tubular cells inhibited CBS expression and amplified albumin-induced cell injury and fibrogenesis, while glutathione supplementation remarkably reversed these changes. Taken together, we concluded that deletion of Bmal1 in proximal tubule may aggravate chronic kidney injury and exacerbate renal fibrosis, the mechanism is related to suppressing CBS transcription and disturbing glutathione related metabolic homeostasis. These findings suggest a protective role of Bmal1 in chronic tubular injury and offer a novel target for treating CKD.


Assuntos
Rim , Insuficiência Renal Crônica , Camundongos , Animais , Rim/patologia , Fibrose , Insuficiência Renal Crônica/patologia , Homeostase , Adenina , Glutationa/metabolismo , Homocisteína/metabolismo
10.
Cells ; 11(17)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36078128

RESUMO

Prostaglandin E2 (PGE2) is an important metabolite of arachidonic acid which plays a crucial role in vascular physiology and pathophysiology via its four receptors (EP1-4). However, the role of vascular smooth muscle cell (VSMC) EP4 in neointimal hyperplasia is largely unknown. Here we showed that VSMC-specific deletion of EP4 (VSMC-EP4) ameliorated, while VSMC-specific overexpression of human EP4 promoted, neointimal hyperplasia in mice subjected to femoral artery wire injury or carotid artery ligation. In vitro studies revealed that pharmacological activation of EP4 promoted, whereas inhibition of EP4 suppressed, proliferation and migration of primary-cultured VSMCs. Mechanically, EP4 significantly increased the protein expression of tenascin C (TN-C), a pro-proliferative and pro-migratory extracellular matrix protein, at the translational level. Knockdown of TN-C markedly suppressed EP4 agonist-induced VSMC proliferation and migration. Further studies uncovered that EP4 upregulated TN-C protein expression via the PKA/mTORC1/Ribosomal protein S6 (rpS6) pathway. Together, our findings demonstrate that VSMC EP4 increases TN-C protein expression to promote neointimal hyperplasia via the PKA-mTORC1-rpS6 pathway. Therefore, VSMC EP4 may represent a potential therapeutic target for vascular restenosis.


Assuntos
Dinoprostona , Hiperplasia , Receptores de Prostaglandina E Subtipo EP4 , Tenascina , Lesões do Sistema Vascular , Animais , Proliferação de Células , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Proteína S6 Ribossômica/metabolismo , Tenascina/metabolismo
11.
Metabolites ; 12(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35888719

RESUMO

Peroxisome proliferator-activated receptor ß/δ (PPARß/δ), a ligand-activated nuclear receptor, regulates lipid and glucose metabolism and inflammation. PPARß/δ can exert an anti-inflammatory effect by suppressing proinflammatory cytokine production. Cyclooxygenase-2 (COX-2)-triggered inflammation plays a crucial role in the development of many inflammatory diseases, including glomerulonephritis. However, the effect of PPARß/δ on the expression of COX-2 in the kidney has not been fully elucidated. The present study showed that PPARß/δ was functionally expressed in human mesangial cells (hMCs), where its expression was increased by interleukin-1ß (IL-1ß) treatment concomitant with enhanced COX-2 expression and prostaglandin E2 (PGE2) biosynthesis. The treatment of hMCs with GW0742, a selective agonist of PPARß/δ, or the overexpression of PPARß/δ via an adenovirus-mediated approach significantly increased COX-2 expression and PGE2 production. PPARß/δ could further augment the IL-1ß-induced COX-2 expression and PGE2 production in hMCs. Moreover, both PPARß/δ activation and overexpression markedly increased sirtuin 1 (SIRT1) expression. The inhibition or knockdown of SIRT1 significantly attenuated the effects of PPARß/δ on the IL-1ß-induced expression of COX-2 and PGE2 biosynthesis. Taken together, PPARß/δ could augment the IL-1ß-induced COX-2 expression and PGE2 production in hMCs via the SIRT1 pathway. Given the critical role of COX-2 in glomerulonephritis, PPARß/δ may represent a novel target for the treatment of renal inflammatory diseases.

12.
J Immunol ; 208(8): 1912-1923, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35379745

RESUMO

The mechanism regulating the life span of short-lived plasma cells (SLPCs) remains poorly understood. Here we demonstrated that the EP4-mediated activation of AKT by PGE2 was required for the proper control of inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) hyperactivation and hence the endoplasmic reticulum (ER) homeostasis in IgM-producing SLPCs. Disruption of the PGE2-EP4-AKT signaling pathway resulted in IRE1α-induced activation of JNK, leading to accelerated death of SLPCs. Consequently, Ptger4-deficient mice (C57BL/6) exhibited a markedly impaired IgM response to T-independent Ags and increased susceptibility to Streptococcus pneumoniae infection. This study reveals a highly selective impact of the PGE2-EP4 signal on the humoral immunity and provides a link between ER stress response and the life span of SLPCs.


Assuntos
Sobrevivência Celular , Dinoprostona , Estresse do Retículo Endoplasmático , Endorribonucleases , Plasmócitos , Proteínas Serina-Treonina Quinases , Animais , Sobrevivência Celular/imunologia , Dinoprostona/imunologia , Estresse do Retículo Endoplasmático/imunologia , Endorribonucleases/imunologia , Imunoglobulina M/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmócitos/imunologia , Prostaglandinas/imunologia , Prostaglandinas E/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia
13.
EBioMedicine ; 76: 103855, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35123268

RESUMO

As a major social and economic burden for the healthcare system, kidney diseases contribute to the constant increase of worldwide deaths. A deeper understanding of the underlying mechanisms governing the etiology, development and progression of kidney diseases may help to identify potential therapeutic targets. As a superfamily of ligand-dependent transcription factors, nuclear receptors (NRs) are critical for the maintenance of normal renal function and their dysfunction is associated with a variety of kidney diseases. Increasing evidence suggests that ligands for NRs protect patients from renal ischemia/reperfusion (I/R) injury, drug-induced acute kidney injury (AKI), diabetic nephropathy (DN), renal fibrosis and kidney cancers. In the past decade, some breakthroughs have been made for the translation of NR ligands into clinical use. This review summarizes the current understanding of several important NRs in renal physiology and pathophysiology and discusses recent findings and applications of NR ligands in the management of kidney diseases.


Assuntos
Injúria Renal Aguda , Nefropatias Diabéticas , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Nefropatias Diabéticas/patologia , Fibrose , Humanos , Rim/patologia , Rim/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Traumatismo por Reperfusão/patologia
14.
Am J Physiol Renal Physiol ; 321(5): F617-F628, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569253

RESUMO

The ligand-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating renal function. Activation of FXR by its specific agonists exerts renoprotective action in animals with acute kidney injury (AKI). In the present study, we aimed to identify naturally occurring agonists of FXR with potential as therapeutic agents in renal ischemia-reperfusion injury. In vitro and in vivo FXR activation was determined by a dual-luciferase assay, docking analysis, site-directed mutagenesis, and whole kidney transcriptome analysis. Wild-type (WT) and FXR knockout (FXR-/-) mice were used to determine the effect of potential FXR agonist on renal ischemia-reperfusion injury (IRI). We found that alisol B 23-acetate (ABA), a major active triterpenoid extracted from Alismatis rhizoma, a well-known traditional Chinese medicine, can activate renal FXR and induce FXR downstream gene expression in mouse kidney. ABA treatment significantly attenuated renal ischemia-reperfusion-induced AKI in WT mice but not in FXR-/- mice. Our results demonstrate that ABA can activate renal FXR to exert renoprotection against ischemia-reperfusion injury-induced AKI. Therefore, ABA may represent a potential therapeutic agent in the treatment of ischemic AKI.NEW & NOTEWORTHY In the present study, we found that alisol B 23-acetate (ABA), an identified natural farnesoid X receptor (FXR) agonist from the well-known traditional Chinese medicine Alismatis rhizoma, protects against ischemic acute kidney injury (AKI) in an FXR-dependent manner, as reflected by improved renal function, reduced renal tubular apoptosis, ameliorated oxidative stress, and suppressed inflammatory factor expression. Therefore, ABA may have great potential as a novel therapeutic agent in the treatment of AKI in the future.


Assuntos
Injúria Renal Aguda/prevenção & controle , Colestenonas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Rim/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Células HEK293 , Células Hep G2 , Humanos , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
15.
Cell Mol Immunol ; 18(11): 2530-2540, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34556823

RESUMO

Immunomodulation is considered a potential therapeutic approach for chronic kidney disease (CKD). Although it has been previously reported that CD4+ T cells contribute to the development of renal fibrosis, the role of MHC class II (MHCII) in the development of renal fibrosis remains largely unknown. The present study reports that the expression of MHCII molecules in renal cortical tubules is upregulated in mouse renal fibrosis models generated by unilateral ureter obstruction (UUO) and folic acid (FA). Proximal tubule epithelial cells (PTECs) are functional antigen-presenting cells that promote the proliferation of CD4+ T cells in an MHCII-dependent manner. PTECs from mice with renal fibrosis had a stronger ability to induce T cell proliferation and cytokine production than control cells. Global or renal tubule-specific ablation of H2-Ab1 significantly alleviated renal fibrosis following UUO or FA treatment. Renal expression of profibrotic genes showed a consistent reduction in H2-Ab1 gene-deficient mouse lines. Moreover, there was a marked increase in renal tissue CD4+ T cells after UUO or FA treatment and a significant decrease following renal tubule-specific ablation of H2-Ab1. Furthermore, renal tubule-specific H2-Ab1 gene knockout mice exhibited higher proportions of regulatory T cells (Tregs) and lower proportions of Th2 cells in the UUO- or FA-treated kidneys. Finally, Immunohistochemistry (IHC) studies showed increased renal expression of MHCII and the profibrotic gene α smooth muscle actin (α-SMA) in CKD patients. Together, our human and mouse data demonstrate that renal tubular MHCII plays an important role in the pathogenesis of renal fibrosis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Epiteliais/fisiologia , Túbulos Renais Proximais/patologia , Insuficiência Renal Crônica/imunologia , Linfócitos T Reguladores/imunologia , Animais , Apresentação de Antígeno , Proliferação de Células , Fibrose , Ácido Fólico/metabolismo , Antígenos de Histocompatibilidade Classe II , Humanos , Imunomodulação , Túbulos Renais Proximais/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Renal Crônica/terapia , Regulação para Cima
16.
Biochim Biophys Acta Mol Basis Dis ; 1867(3): 165996, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127475

RESUMO

Cisplatin-induced acute kidney injury (CAKI) has been recognized as one of the most serious side effects of cisplatin. Pregnane X receptor (PXR) is a ligand-dependent nuclear receptor and serves as a master regulator of xenobiotic detoxification. Increasing evidence also suggests PXR has many other functions including the regulation of cell proliferation, inflammatory response, and glucose and lipid metabolism. In this study, we aimed to investigate the role of PXR in cisplatin-induced nephrotoxicity in mice. CAKI model was performed in wild-type or PXR knockout mice. Pregnenolone 16α­carbonitrile (PCN), a mouse PXR specific agonist, was used for PXR activation. The renal function, biochemical, histopathological and molecular alterations were examined in mouse blood, urine or renal tissues. Whole transcriptome analysis was performed by RNA sequencing. We found that PXR activation significantly attenuated CAKI as reflected by improved renal function, reduced renal tubular apoptosis, ameliorated oxidative and endoplasmic reticulum stress, and suppressed inflammatory gene expression. RNA sequencing analysis revealed that the renoprotective effect of PXR was associated with multiple crucial signaling pathways, especially the PI3K/AKT pathway. In vitro study further revealed that PXR protected against cisplatin-induced apoptosis of cultured proximal tubule cells in a PI3K-dependent manner. Our results demonstrate that PXR activation can preserve renal function in cisplatin-induced AKI and suggest a possibility of PXR as a novel protective target for cisplatin-induced nephrotoxicity.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Rim/efeitos dos fármacos , Receptor de Pregnano X/metabolismo , Injúria Renal Aguda/patologia , Animais , Células Cultivadas , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Proteção , Transdução de Sinais/efeitos dos fármacos
17.
Front Mol Biosci ; 8: 824776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071330

RESUMO

Nonalcoholic fatty liver disease (NAFLD), especially in its inflammatory form (steatohepatitis, NASH), is closely related to the pathogenesis of chronic liver disease. Despite substantial advances in the management of NAFLD/NASH in recent years, there are currently no efficacious therapies for its treatment. The biogenesis and expansion of lipid droplets (LDs) are critical pathophysiological processes in the development of NAFLD/NASH. In the past decade, increasing evidence has demonstrated that lipid droplet-associated proteins may represent potential therapeutic targets for the treatment of NAFLD/NASH given the critical role they play in regulating the biogenesis and metabolism of lipid droplets. Recently, HSD17B13, a newly identified liver-enriched, hepatocyte-specific, lipid droplet-associated protein, has been reported to be strongly associated with the development and progression of NAFLD/NASH in both mice and humans. Notably, human genetic studies have repeatedly reported a robust association of HSD17B13 single nucleotide polymorphisms (SNPs) with the occurrence and severity of NAFLD/NASH and other chronic liver diseases (CLDs). Here we briefly overview the discovery, tissue distribution, and subcellular localization of HSD17B13 and highlight its important role in promoting the pathogenesis of NAFLD/NASH in both experimental animal models and patients. We also discuss the potential of HSD17B13 as a promising target for the development of novel therapeutic agents for NAFLD/NASH.

18.
Exp Cell Res ; 390(1): 111949, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32145254

RESUMO

Farnesoid X receptor (FXR) is a metabolic nuclear receptor, which protects liver from many endogenous and exogenous injuries. Metallothioneins (MTs) belong to a low-molecular-weight protein family involved in metal homeostasis and the regulation of hepatic oxidative stress. In the present study, we aimed to investigate the effect of FXR on hepatic MT1 expression and the underlying mechanism. C57BL/6 mice or primary cultured mouse hepatocytes were treated with the synthetic FXR ligand GW4064 or natural ligand CDCA. RNA-Sequencing (RNA-seq) analysis was performed to identify gene expression profile in the livers of mice treated with GW4064. Real-time PCR and Western blot were applied to determine the expression of MT1 and other FXR target genes in the livers of mice and primary hepatocytes treated with GW4064 and CDCA. Cellular and subcellular locations of MT1 in the livers of mice treated with GW4064 were examined using immunohistochemistry assay. FXR small interfering RNAs (siRNA) was transfected to silence FXR. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were utilized to confirm the regulation of MT1 gene promoter activity by FXR. RNA-seq analysis revealed that GW4064 treatment significantly induced MT1 expression in mouse liver. Consistently, MT1 expression in the hepatocytes of mouse livers and cultured hepatocytes was upregulated by GW4064 as well as CDCA. In addition, adenovirus-mediated overexpression of FXR markedly increased, while siRNA-mediated FXR silencing significantly suppressed MT1 expression in cultured hepatocytes. Luciferase reporter and ChIP assays further confirmed that the MT1 gene was under the direct control of FXR. Collectively, our findings demonstrate that MT1 is a novel target gene of FXR and may contribute to antioxidative capacity of FXR in liver diseases.


Assuntos
Fígado/metabolismo , Metalotioneína/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Células Cultivadas , Hepatócitos/metabolismo , Humanos , Masculino , Metalotioneína/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética
19.
Mol Cell Endocrinol ; 489: 119-125, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365983

RESUMO

17ß-Hydroxysteroid dehydrogenases (HSD17Bs) comprise a large family of 15 members that are mainly involved in sex hormone metabolism. Some HSD17Bs enzymes also play key roles in cholesterol and fatty acid metabolism. Recent study showed that hydroxysteroid 17ß-dehydrogenase 13 (HSD17B13), an enzyme with unknown biological function, is a novel liver-specific lipid droplet (LD)-associated protein in mouse and humans. HSD17B13 expression is markedly upregulated in patients and mice with non-alcoholic fatty liver disease (NAFLD). Hepatic overexpression of HSD17B13 promotes lipid accumulation in the liver. In this review, we summarize recent progress regarding the role of HSD17B13 in the regulation of hepatic lipid homeostasis and discuss genetic, genomic and proteomic evidence supporting the pathogenic role of HSD17B13 in NAFLD. We also emphasize its potential as a biomarker of advanced liver disease, such as non-alcoholic steatohepatitis (NASH) and liver cancer.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Fígado/enzimologia , Fígado/fisiopatologia , 17-Hidroxiesteroide Desidrogenases/química , Animais , Humanos , Hepatopatias/enzimologia , Modelos Biológicos
20.
Cell Death Dis ; 9(9): 859, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154417

RESUMO

JAZF zinc finger 1 (JAZF1) is involved in glucose and lipid metabolisms. However, its role in aging- and nutrient-related hepatic steatosis is unclear. In the current study, we demonstrated that JAZF1 expression was markedly down-regulated in obesity-associated mice and nonalcoholic fatty liver disease (NAFLD) patients. During aging, JAZF1 expression was gradually down-regulated in both C57BL/6 J and JAZF1-Tg mice. In JAZF1-Tg mice, body fat content and hepatosteatosis were protected from HFD-induced steatosis, and accompanied by decreased lipogenesis gene expression. The inhibitory effects of hepatic steatosis in JAZF1-Tg mice, however, were disappeared during aging. In hepatocytes, over-expression of JAZF1 attenuated, while knockdown of JAZF1 enhanced the expression of lipogenesis genes. The over-expressing of JAZF1 in hepatocytes displayed the increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and decreased sterol regulatory element-binding protein 1c (SREBP-1c) expression. The roles of JAZF1 were partially attenuated by Compound C. Mechanistically, JAZF1 suppressed SREBP-1c expression through the inhibition of transcriptional activity of liver X receptor response elements (LXREs) in the SREBP-1c promoter. Data illustrate that JAZF1 may have a crucial role in the regulation of age and nutrient-associated hepatosteatosis through an AMPK/SREBP-1c-dependent mechanism.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/genética , Proteínas de Neoplasias/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteínas Quinases Ativadas por AMP/genética , Animais , Proteínas Correpressoras , Proteínas de Ligação a DNA , Fígado Gorduroso/patologia , Hepatócitos/patologia , Humanos , Lipogênese/genética , Fígado/patologia , Receptores X do Fígado/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA