Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Aesthetic Plast Surg ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772942

RESUMO

BACKGROUND: Hypertrophic osteoarthropathy (HOA) is a rare and intricate hereditary disease. The appearance and functional deformity of the forehead caused by thickened folds are the main clinical manifestations of patients with hypertrophic osteoarthropathy. The cause of this disease is still unknown. Currently, surgical treatment has become one of the best strategies, mainly for improving the appearance of the forehead. There has been no literature report on the use of "W"-shaped skin flap resection for thickened forehead skin in patients with hypertrophic osteoarthropathy. METHODS: All cases of hypertrophic osteoarthropathy in our department in the last 7 years, and previous literature on hypertrophic osteoarthropathy, were reviewed. RESULTS: A total of 5 cases of hypertrophic osteoarthropathy in our department (mean age 21 years, all male patients) were reviewed. All patients underwent open surgery to remove the thickened skin on the forehead or the wrinkles and gyrus-shaped scalp. The jagged skin tissue was removed (8-9) cm × (1-2.5) cm × 0.5 cm. The folds and thickness of the frontal skin of the patients were greatly improved after the operation. Patient satisfaction with the treatment outcomes was unanimous. However, one case experienced a postoperative wound infection during follow-up. The utilization of the "W"-shaped excision technique allowed for the maximal removal of excessively diseased tissue, thereby facilitating a smoother resolution of the depression. CONCLUSIONS: A total of 5 cases of hypertrophic osteoarthropathy were treated in our department, and all of them underwent frontal skin "W"-shaped excision, which was safe, feasible, and practical, and the postoperative results were satisfactory. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

2.
Nat Commun ; 14(1): 8464, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123554

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a crucial regulator of cell growth. It senses nutrient signals and adjusts cellular metabolism accordingly. Deregulation of mTORC1 has been associated with metabolic diseases, cancer, and aging. Amino acid signals are transduced to mTORC1 through sensor proteins and two protein complexes named GATOR1 and GATOR2. In this study, we identify VWCE (von Willebrand factor C and EGF domains) as a negative regulator of amino acid-dependent mTORC1 signaling. Knockdown of VWCE promotes mTORC1 activity even in the absence of amino acids. VWCE interacts with the KICSTOR complex to facilitate the recruitment of GATOR1 to the lysosomes. Bioinformatic analysis reveals that expression of VWCE is reduced in prostate cancer. More importantly, overexpression of VWCE inhibits the development of prostate cancer. Therefore, VWCE may serve as a potential therapeutic target for the treatment of prostate cancers.


Assuntos
Aminoácidos , Neoplasias da Próstata , Masculino , Humanos , Aminoácidos/metabolismo , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Lisossomos/metabolismo
3.
Eur J Med Chem ; 254: 115367, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086699

RESUMO

Histone deacetylases (HDACs) and lysine-specific demethylase 1 (LSD1) are attractive targets for epigenetic cancer therapy. There is an intimate interplay between the two enzymes. HDACs inhibitors have shown synergistic anticancer effects in combination with LSD1 inhibitors in several types of cancer. Herein, we describe the discovery of compound 5e, a highly potent HDACs inhibitor (HDAC1/2/6/8; IC50 = 2.07/4.71/2.40/107 nM) with anti-LSD1 potency (IC50 = 1.34 µM). Compound 5e exhibited marked antiproliferative activity in several cancer cell lines. 5e effectively induced mitochondrial apoptosis with G2/M phase arrest, inhibiting cell migration and invasion in MGC-803 and HCT-116 cancer cells. It also showed good liver microsomal stability and acceptable pharmacokinetic parameters in SD rats. More importantly, orally administered compound 5e demonstrated higher in vivo antitumor efficacy than SAHA in the MGC-803 (TGI = 71.5%) and HCT-116 (TGI = 57.6%) xenograft tumor models accompanied by good tolerability. This study provides a novel lead compound with dual inhibitory activity against HDACs and LSD1 to further develop epigenetic drugs for solid tumor therapy. Further optimization is needed to improve the LSD1 activity to achieve dual inhibitors with balanced potency on LSD1 and HDACs.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Ratos , Animais , Inibidores de Histona Desacetilases/farmacologia , Linhagem Celular Tumoral , Ratos Sprague-Dawley , Proliferação de Células , Apoptose , Histona Desmetilases , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 73: 117033, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202064

RESUMO

Targeted protein degradation using proteolysis-targeting chimeras (PROTACs) has emerged as an effective strategy for drug discovery, given their unique advantages over target protein inhibition. The bromodomain and extra-terminal (BET) family proteins play a key role in regulating oncogene expression and are considered attractive therapeutic targets for cancer therapy. Considering the therapeutic potential of BET proteins in cancer and the marked attractiveness of PROTACs, BET-targeting PROTACs have been extensively pursued. Recently, BET-targeting PROTACs based on new E3 ligases and novel strategies, such as light-activated, macrocyclic, folate-caged, aptamer-PROTAC conjugation, antibody-coupling, and autophagy-targeting strategies, have emerged. In the present review, we provide a comprehensive summary of advances in BET-targeting PROTACs.


Assuntos
Neoplasias , Humanos , Ácido Fólico , Neoplasias/tratamento farmacológico , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
5.
Front Plant Sci ; 13: 943217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937376

RESUMO

The ankyrin-transmembrane (ANKTM) subfamily is the most abundant subgroup of the ANK superfamily, with critical roles in pathogen defense. However, the function of ANKTM proteins in wheat immunity remains largely unexplored. Here, a total of 381 ANKTMs were identified from five Triticeae species and Arabidopsis, constituting five classes. Among them, class a only contains proteins from Triticeae species and the number of ANKTM in class a of wheat is significantly larger than expected, even after consideration of the ploidy level. Tandem duplication analysis of ANKTM indicates that Triticum urartu, Triticum dicoccoides and wheat all had experienced tandem duplication events which in wheat-produced ANKTM genes all clustered in class a. The above suggests that not only did the genome polyploidization result in the increase of ANKTM gene number, but that tandem duplication is also a mechanism for the expansion of this subfamily. Micro-collinearity analysis of Triticeae ANKTMs indicates that some ANKTM type genes evolved into other types of ANKs in the evolution process. Public RNA-seq data showed that most of the genes in class d and class e are expressed, and some of them show differential responses to biotic stresses. Furthermore, qRT-PCR results showed that some ANKTMs in class d and class e responded to powdery mildew. Silencing of TaANKTM2A-5 by barley stripe mosaic virus-induced gene silencing compromised powdery mildew resistance in common wheat Bainongaikang58. Findings in this study not only help to understand the evolutionary process of ANKTM genes, but also form the basis for exploring disease resistance genes in the ANKTM gene family.

7.
Front Cell Dev Biol ; 10: 870441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573687

RESUMO

Stem cell-based cell therapies are considered to be promising treatments for retinal disorders with dysfunction or death of photoreceptors. However, the enrichment of human photoreceptors suitable for transplantation has been highly challenging so far. This study aimed to generate a photoreceptor-specific reporter human induced pluripotent stem cell (hiPSC) line using CRISPR/Cas9 genome editing, which harbored an enhanced green fluorescent protein (eGFP) sequence at the endogenous locus of the pan photoreceptor marker recoverin (RCVRN). After confirmation of successful targeting and gene stability, three-dimensional retinal organoids were induced from this reporter line. The RCVRN-eGFP reporter faithfully replicated endogenous protein expression of recoverin and revealed the developmental characteristics of photoreceptors during retinal differentiation. The RCVRN-eGFP specifically and steadily labeled photoreceptor cells from photoreceptor precursors to mature rods and cones. Additionally, abundant eGFP-positive photoreceptors were enriched by fluorescence-activated cell sorting, and their transcriptome signatures were revealed by RNA sequencing and data analysis. Moreover, potential clusters of differentiation (CD) biomarkers were extracted for the enrichment of photoreceptors for clinical applications, such as CD133 for the positive selection of photoreceptors. Altogether, the RCVRN-eGFP reporter hiPSC line was successfully established and the first global expression database of recoverin-positive photoreceptors was constructed. These achievements will provide a powerful tool for dynamically monitoring photoreceptor cell development and purification of human photoreceptors, thus facilitating photoreceptor cell therapy for advanced retinal disorders.

8.
J Agric Food Chem ; 70(18): 5526-5540, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35484643

RESUMO

Cadmium (Cd) is one of the most toxic heavy metal elements to the environment, which seriously threatens the safe production of food crops. In this study, we identified a novel function of the cytomembrane TaSFT2L protein in wheat (Triticum aestivum). Expression of the TaSFT2L gene in yeast showed no transport activities for Cd, which could explain the role of TaSFT2L in metal tolerance. It was observed that increased autophagic activity in roots caused by silencing of TaSFT2L enhanced Cd tolerance. Transgenic wheat revealed that RNA interference (RNAi) lines enhanced the wheat growth concerning the increased shoot or root elongation, dry weight, and chlorophyll accumulation. Furthermore, RNAi lines decreased root-to-grain Cd translocation in wheat by nearly 68% and Cd accumulation in wheat grains by 53%. Meanwhile, the overexpression lines displayed a compromised growth response and increased Cd accumulation in wheat tissues, compared to wild type. These findings show that TaSFT2L is a key gene involved in regulation of Cd translocation in wheat, and its silencing to form transgenic wheat can inhibit Cd accumulation. This has the ability to alleviate the food chain-associated impact of environmental pollution on human health.


Assuntos
Cádmio , Poluentes do Solo , Transporte Biológico , Cádmio/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Raízes de Plantas/química , Poluentes do Solo/metabolismo , Triticum/genética , Triticum/metabolismo
9.
Mol Cell ; 82(4): 770-784.e9, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35114100

RESUMO

The mTOR complex 1 (mTORC1) is an essential metabolic hub that coordinates cellular metabolism with the availability of nutrients, including amino acids. Sestrin2 has been identified as a cytosolic leucine sensor that transmits leucine status signals to mTORC1. In this study, we identify an E3 ubiquitin ligase RING finger protein 167 (RNF167) and a deubiquitinase STAMBPL1 that function in concert to control the polyubiquitination level of Sestrin2 in response to leucine availability. Ubiquitination of Sestrin2 promotes its interaction with GATOR2 and inhibits mTORC1 signaling. Bioinformatic analysis reveals decreased RNF167 expression and increased STAMBPL1 expression in gastric and colorectal tumors. Knockout of STAMBPL1 or correction of the heterozygous STAMBPL1 mutation in a human colon cancer cell line suppresses xenograft tumor growth. Lastly, a cell-permeable peptide that blocks the STAMBPL1-Sestrin2 interaction inhibits mTORC1 and provides a potential option for cancer therapy.


Assuntos
Neoplasias Colorretais/enzimologia , Peptídeo Hidrolases/metabolismo , Neoplasias Gástricas/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células CACO-2 , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Proteínas Nucleares/metabolismo , Peptídeo Hidrolases/genética , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Carga Tumoral , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
10.
Eur J Med Chem ; 231: 114144, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35093670

RESUMO

The polycomb repressive complex 2 (PRC2), which comprised of the core subunits: Enhancer of Zeste Homolog 2 (EZH2), Suppressor of Zeste 12 (SUZ12), and Embryonic Ectoderm Development (EED), is an essential epigenetic gene silencer responsible for depositing repressive histone H3 lysine 27 trimethylation (H3K27me3) marks on chromatin. The aberrant activity of PRC2 is closely involved in tumorigenesis and progression, making its inhibition a viable strategy for epigenetic cancer therapy. Although the clinical development of small PRC2 inhibitors has made impressive progress, with one EZH2 inhibitor approved for cancer therapy and several other candidates in clinical trials, current EZH2 inhibitors are limited to treating certain hematological malignancies and have acquired drug resistance. EED is essential for PRC2 stabilization and allosterically stimulating PRC2 activity because it functions as a scaffold protein and an H3K27me3-recognizing protein. Thus, due to its novel mechanism of action, targeting EED provides a promising new strategy for inhibiting PRC2 function and exhibits the potential to overcome the issues encountered by EZH2 inhibitors. This review provides a comprehensive overview of available cancer therapy strategies that target EED, including allosteric inhibitors, protein-protein interaction (PPI) inhibitors, and proteolysis-targeting chimeras (PROTACs).


Assuntos
Ectoderma , Neoplasias , Ectoderma/metabolismo , Ectoderma/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Neoplasias/metabolismo , Complexo Repressor Polycomb 2
11.
BMC Plant Biol ; 21(1): 545, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34800968

RESUMO

BACKGROUND: Virus-induced gene silencing (VIGS) is one of the most convenient and powerful methods of reverse genetics. In vitro-inoculation of plant virus is an important method for studying the interactions between viruses and plants. Agrobacterium-based infiltration has been widely adopted as a tool for VIGS and in vitro-inoculation of plant virus. Most agrobacterium-based infiltration methods applied to VIGS and virus inoculation have the characteristics of low transformation efficiencies, long plant growth time, large amounts of plant tissue, large test spaces, and complex preparation procedures. Therefore, a rapid, simple, economical, and highly efficient VIGS and virus inoculation method is in need. Previous studies have shown that the selection of suitable plant tissues and inoculation sites is the key to successful infection. RESULTS: In this study, Tobacco rattle virus (TRV) mediated VIGS and Tomato yellow leaf curl virus (TYLCV) for virus inoculation were developed in tomato plants based on the agrobacterium tumefaciens-based infiltration by injection of the no-apical-bud stem section (INABS). The no-apical-bud stem section had a "Y- type" asymmetric structure and contained an axillary bud that was about 1-3 cm in length. This protocol provides high transformation (56.7%) and inoculation efficiency (68.3%), which generates VIGS transformants or diseased plants in a very short period (8 dpi). Moreover, it greatly reduces the required experimental space. This method will facilitate functional genomic studies and large-scale disease resistance screening. CONCLUSIONS: Overall, a rapid, simple, and highly efficient method for VIGS and virus inoculation by INABS was developed in tomato. It was reasonable to believe that it can be used as a reference for the other virus inoculation methods and for the application of VIGS to other crops (such as sweet potato, potato, cassava and tobacco) that develop axillary buds and can survive from cuttings.


Assuntos
Agrobacterium/patogenicidade , Begomovirus/patogenicidade , Inativação Gênica , Melhoramento Vegetal/métodos , Vírus de Plantas/patogenicidade , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/virologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/virologia , Doenças das Plantas/virologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-34531918

RESUMO

OBJECTIVE: To establish the diagnosis model for syndromes of type 2 diabetes mellitus (T2-DM) and explore symptoms, the pulse and tongue signs, and laboratory indexes related to syndromes of T2-DM. METHODS: A syndromatologic and laboratory investigation was conducted in 554 T2-DM patients with 58 symptoms, 14 tongue signs, 6 pulse signs, and 12 laboratory indexes. The clinical data on the syndrome were collected and analyzed by using logistic regression analysis, decision tree, and K-nearest neighbor to establish a diagnostic model for effectively distinguishing the typical syndromes in T2-DM patients. RESULTS: The most typical syndromes revealed in T2-DM were stomach heat flourishing (SHF) syndrome (261 patients, accounting for 47.1%) and Qi-Yin deficiency (QYD) syndrome (293 patients, 52.9%). According to the clinical data of the patients with these two syndromes, variables including 6 symptoms and signs, 2 pulse signs, 1 tongue sign, and 2 laboratory indicators were introduced into the logistic regression model. All of them were statistically significant. Then, a diagnostic model constructed by QUEST and CHAID algorithms of the decision tree for identifying the two syndromes was proved to have an accurate diagnostic rate of 85.2%. It was found that the following sign and symptoms were effective to differentiate these two syndromes: odor in the mouth, polyphagia, vulnerability to starvation, burning sensation in the stomach, fatigue, limb weakness, slippery and replete pulse, weak pulse, pink tongue, oral glucose tolerance test, and hemoglobin A1C. A classification model constructed by the K-nearest neighbor method to identify the two syndromes showed an accurate diagnostic rate of 88.3%. Three major statistically significant predictors included in the model were slippery and replete pulse, polyphagia, and weak pulse (P < 0.05). CONCLUSION: A model for distinguishing the two typical syndromes (SHF syndrome and QYD syndrome) in T2-DM patients was effectively established. This model could help to provide methodological support for the standardization of traditional Chinese medicine (TCM) syndrome differentiation methods.

13.
PeerJ ; 9: e11811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447619

RESUMO

BACKGROUND: Wheat (Triticum aestivum) originated from three different diploid ancestral grass species and experienced two rounds of polyploidization. Exploring how certain wheat gene subfamilies have expanded during the evolutionary process is of great importance. The Lateral Organ Boundaries Domain (LBD) gene family encodes plant-specific transcription factors that share a highly conserved LOB domain and are prime candidates for this, as they are involved in plant growth, development, secondary metabolism and stress in various species. METHODS: Using a genome-wide analysis of high-quality polyploid wheat and related species genome sequences, a total of 228 LBD members from five Triticeae species were identified, and phylogenetic relationship analysis of LBD members classified them into two main classes (classes I and II) and seven subgroups (classes I a-e, II a and II b). RESULTS: The gene structure and motif composition analyses revealed that genes that had a closer phylogenetic relationship in the same subgroup also had a similar gene structure. Macrocollinearity and microcollinearity analyses of Triticeae species suggested that some LBD genes from wheat produced gene pairs across subgenomes of chromosomes 4A and 5A and that the complex evolutionary history of TaLBD4B-9 homologs was a combined result of chromosome translocation, polyploidization, gene loss and duplication events. Public RNA-seq data were used to analyze the expression patterns of wheat LBD genes in various tissues, different developmental stages and following abiotic and biotic stresses. Furthermore, qRT-PCR results suggested that some TaLBDs in class II responded to powdery mildew, regulated reproductive growth and were involved in embryo sac development in common wheat.

14.
Eur J Med Chem ; 222: 113588, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107385

RESUMO

Abnormal epigenetics is a critical hallmark of human cancers. Anticancer drug discovery directed at histone epigenetic modulators has gained impressive advances with six drugs available for cancer therapy and numerous other candidates undergoing clinical trials. However, limited therapeutic profile, drug resistance, narrow safety margin, and dose-limiting toxicities pose intractable challenges for their clinical utility. Because histone epigenetic modulators undergo intricate crosstalk and act cooperatively to shape an aberrant epigenetic profile, co-targeting histone epigenetic modulators with a different mechanism of action has rapidly emerged as an attractive strategy to overcome the limitations faced by the single-target epigenetic inhibitors. In this review, we summarize in detail the crosstalk of histone epigenetic modulators in regulating gene transcription and the progress of dual epigenetic inhibitors targeting this crosstalk.


Assuntos
Antineoplásicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Histonas/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Epigênese Genética/genética , Histonas/genética , Humanos , Estrutura Molecular , Neoplasias/genética
15.
Eur J Med Chem ; 220: 113453, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33957387

RESUMO

LSD1 and HDAC are physical and functional related to each other in various human cancers and simultaneous pharmacological inhibition of LSD1 and HDAC exerts synergistic anti-cancer effects. In this work, a series of novel LSD1/HDAC bifunctional inhibitors with a styrylpyridine skeleton were designed and synthesized based on our previously reported LSD1 inhibitors. The representative compounds 5d and 5m showed potent activity against LSD1 and HDAC at both molecular and cellular level and displayed high selectivity against MAO-A/B. Moreover, compounds 5d and 5m demonstrated potent antiproliferative activities against MGC-803 and HCT-116 cancer cell lines. Notably, compound 5m showed superior in vitro anticancer potency against a panel of gastric cancer cell lines than ORY-1001 and SP-2509 with IC50 values ranging from 0.23 to 1.56 µM. Compounds 5d and 5m significantly modulated the expression of Bcl-2, Bax, Vimentin, ZO-1 and E-cadherin, induced apoptosis, reduced colony formation and suppressed migration in MGC-803 cancer cells. In addition, preliminary absorption, distribution, metabolism, excretion (ADME) studies revealed that compounds 5d and 5m showed acceptable metabolic stability in human liver microsomes with minimal inhibition of cytochrome P450s (CYPs). Those results indicated that compound 5m could be a promising lead compound for further development as a therapeutic agent in gastric cancers via LSD1 and HDAC dual inhibition.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Histona Desacetilases/metabolismo , Histona Desmetilases/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Histona Desmetilases/metabolismo , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Medchemcomm ; 9(11): 1779-1802, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30542529

RESUMO

Bromodomain-containing protein 4 (Brd4) plays an important role in mediating the expression of genes involved in cancers and non-cancer diseases such as inflammatory diseases and acute heart failure. Inactivating Brd4 or downregulating its expression inhibits cancer development, leading to the current interest in Brd4 as a promising anticancer drug target. Numerous Brd4 inhibitors have been studied in recent years and some of them are currently in various phases of clinical trials. Recently, selective degradation of target proteins by small bifunctional molecules (PROTACs) has emerged as an attractive drug discovery approach owing to the advantages it could offer over traditional small-molecule inhibitors. A number of Brd4 degraders have been reported and showed more efficient anticancer activities than just protein inhibition. In this review, we will discuss recent findings in the discovery and development of small-molecule inhibitors and degraders that target Brd4 as a potential anticancer agent.

17.
Bioorg Med Chem ; 26(23-24): 6000-6014, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30448189

RESUMO

LSD1 is implicated in a number of malignancies and has emerged as an exciting target. As part of our sustained efforts to develop novel reversible LSD1 inhibitors for epigenetic therapy of cancers, in this study, we reported a series of stilbene derivatives and evaluated their LSD1 inhibitory activities, obtaining several compounds as potent LSD1 inhibitors with IC50 values in submicromolar range. Enzyme kinetics studies and SPR assay suggested that compound 8c, the most active LSD1 inhibitor (IC50 = 283 nM), potently inhibited LSD1 in a reversible and FAD competitive manner. Consistent with the kinetics data, molecular docking showed that compound 8c can be well docked into the FAD binding site of LSD1. Flow cytometry analysis showed that compound 8c was capable of up-regulating the expression of the surrogate cellular biomarker CD86 in THP-1 human leukemia cells, suggesting the ability to block LSD1 activity in cells. Compound 8c showed good inhibition against THP-1 and MOLM-13 cells with IC50 values of 5.76 and 8.34 µM, respectively. Moreover, compound 8c significantly inhibited colony formation of THP-1 cells dose dependently.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Estilbenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Histona Desmetilases/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Estilbenos/síntese química , Estilbenos/química , Relação Estrutura-Atividade , Células THP-1
18.
Eur J Med Chem ; 140: 392-402, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28987602

RESUMO

Lysine specific demethylase 1 (LSD1) and Histone deacetylases (HDACs) are promising drug targets for cancers. Recent studies reveal an important functional interplay between LSD1 and HDACs, and there is evidence for the synergistic effect of combined LSD1 and HDAC inhibitors on cancers. Therefore, development of inhibitors targeting both LSD1 and HDACs might be a promising strategy for epigenetic therapy of cancers. We report herein the synthesis of a series of tranylcypromine derivatives as LSD1/HDACs dual inhibitors. Most compounds showed potent LSD1 and HDACs inhibitory activity, especially compound 7 displayed the most potent inhibitory activity against HDAC1 and HDAC2 with IC50 of 15 nM and 23 nM, as well as potent inhibition against LSD1 with IC50 of 1.20 µM. Compound 7 demonstrated stronger anti-proliferative activities than SAHA with IC50 values ranging from 0.81 to 4.28 µM against MGC-803, MCF-7, SW-620 and A-549 human cancer cell lines. Further mechanistic studies showed that compound 7 treatment in MGC-803 cells dose-dependently increased cellular H3K4 and H3K9 methylation, as well as H3 acetylation, decreased the mitochondrial membrane potential and induced remarkable apoptosis. Docking studies showed that compound 7 can be well docked into the active binding sites of LSD1 and HDAC2. This finding highlights the potential for the development of LSD1/HDACs dual inhibitors as novel anticancer drugs.


Assuntos
Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/antagonistas & inibidores , Neoplasias/patologia , Tranilcipromina/química , Tranilcipromina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases/síntese química , Humanos , Metilação , Simulação de Acoplamento Molecular , Tranilcipromina/síntese química
19.
Int J Biol Macromol ; 104(Pt A): 681-686, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28634059

RESUMO

The purpose of this study is to investigate the effect of a purified polysaccharide (PPPF) from pumpkin fruit on the Janus activated kinase (JAK)/signal transducer and activator of transcription (STAT) signaling during apoptotic process. The results showed that PPPF or STAT3 siRNA inhibits the cell growth of HepG2 cells via induction of apoptosis. Moreover, PPPF is able to suppress both constitutive and IL-6-induced phosphorylation of STAT3 (on Tyr705) and subsequent nuclear translocation in cancer cells. Such inhibition is found to be achieved through down-regulation of constitutive phosphorylation of JAK2, but not JAk1, c-Src, ERK1/2, and Akt, which means STAT3 tyrosine phosphorylation in HepG2 cells following PPPF treatment is associated with a reduction in JAK2 activity. In addition, the protein expression of SHP-1 was increased in cells in response to PPPF treatment, whereas SHP-2, SOCS-1 and SCOS-3 protein expression remain unchanged. In vivo animal experiment also indicated that PPPF had a potent inhibitory effect on tumor growth in mice bearing HepG2 xenograft tumors. Thus we can conclude that PPPF directly induces apoptotic cell death of HepG2 cells via down-regulation of the JAK2/STAT3 signal transduction pathways, which may facilitates the development of a therapeutic strategy for treating HCC.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Cucurbita/química , Janus Quinase 2/metabolismo , Polissacarídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Fosforilação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Eur J Med Chem ; 126: 246-258, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27888721

RESUMO

Inhibition of lysine-specific demethylase 1 (LSD1) has recently emerged as an attractive therapeutic target for treating cancer and other diseases. As a continuity of our ongoing effort to identify novel small-molecule LSD1-inhibitors, we designed and synthesized a series of resveratrol derivatives, which were shown to be potent inhibitors of LSD1. Among them, compounds 4e and 4m displayed the most potent LSD1-inhibitory activities in enzyme assays, with IC50 values of 121 nM and 123 nM, respectively. Biochemistry study and docking analysis indicated that compounds 4e and 4m were reversible LSD1 inhibitors. High content analysis showed that 4e and 4m induced a dose-dependent increase of dimethylated Lys4 of histone H3 and had no impact on the expression of LSD1 in MGC-803 cells. Furthermore, 4e or 4m could remarkably increase the mRNA level of CD86, a surrogate cellular biomarker for LSD1 activity, in MGC-803 cells, suggesting that they are likely to exhibit LSD1-inhibitory activities intracellularly. These findings should encourage further modification of these compounds to produce more potent LSD1 inhibitors with potential anticancer activity.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Estilbenos/síntese química , Estilbenos/farmacologia , Linhagem Celular Tumoral , Técnicas de Química Sintética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Histona Desmetilases/química , Histona Desmetilases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Resveratrol , Estilbenos/química , Estilbenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA