Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Adv Sci (Weinh) ; : e2407069, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225567

RESUMO

Lipid metabolism reprogramming stands as a fundamental hallmark of cancer cells. Unraveling the core regulators of lipid biosynthesis holds the potential to find promising therapeutic targets in pancreatic ductal adenocarcinoma (PDAC). Here, it is demonstrated that platelet-derived growth factor C (PDGFC) orchestrated lipid metabolism, thereby facilitated the malignant progression of PDAC. Expression of PDGFC is upregulated in PDAC cohorts and is corelated with a poor prognosis. Aberrantly high expression of PDGFC promoted proliferation and metastasis of PDAC both in vitro and in vivo. Mechanistically, PDGFC accelerated the malignant progression of PDAC by upregulating fatty acid accumulation through sterol regulatory element-binding protein 1 (SREBP1), a key transcription factor in lipid metabolism. Remarkably, Betulin, an inhibitor of SREBP1, demonstrated the capability to inhibit proliferation and metastasis of PDAC cell lines, along with attenuating the process of liver metastasis in vivo. Overall, the study underscores the pivotal role of PDGFC-mediated lipid metabolism in PDAC progression, suggesting PDGFC as a potential biomarker for PDAC metastasis. Targeting PDGFC-induced lipid metabolism emerges as a promising therapeutic strategy for metastatic PDAC, with the potential to improve clinical outcomes.

2.
Oncogene ; 43(31): 2405-2420, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38914663

RESUMO

Gemcitabine resistance is a major obstacle to the effectiveness of chemotherapy in pancreatic ductal adenocarcinoma (PDAC). Therefore, new strategies are needed to sensitize cancer cells to gemcitabine. Here, we constructed gemcitabine-resistant PDAC cells and analyzed them with RNA-sequence. Employing an integrated approach involving bioinformatic analyses from multiple databases, TGFB2 is identified as a crucial gene in gemcitabine-resistant PDAC and is significantly associated with poor gemcitabine therapeutic response. The patient-derived xenograft (PDX) model further substantiates the gradual upregulation of TGFB2 expression during gemcitabine-induced resistance. Silencing TGFB2 expression can enhance the chemosensitivity of gemcitabine against PDAC. Mechanistically, TGFB2, post-transcriptionally stabilized by METTL14-mediated m6A modification, can promote lipid accumulation and the enhanced triglyceride accumulation drives gemcitabine resistance by lipidomic profiling. TGFB2 upregulates the lipogenesis regulator sterol regulatory element binding factor 1 (SREBF1) and its downstream lipogenic enzymes via PI3K-AKT signaling. Moreover, SREBF1 is responsible for TGFB2-mediated lipogenesis to promote gemcitabine resistance in PDAC. Importantly, TGFB2 inhibitor imperatorin combined with gemcitabine shows synergistic effects in gemcitabine-resistant PDAC PDX model. This study sheds new light on an avenue to mitigate PDAC gemcitabine resistance by targeting TGFB2 and lipid metabolism and develops the potential of imperatorin as a promising chemosensitizer in clinical translation.


Assuntos
Adenosina , Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Metabolismo dos Lipídeos , Neoplasias Pancreáticas , Fator de Crescimento Transformador beta2 , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/genética , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Camundongos , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais/efeitos dos fármacos , Reprogramação Metabólica , Proteína de Ligação a Elemento Regulador de Esterol 1
3.
Neurosci Bull ; 40(10): 1421-1433, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38739251

RESUMO

Irritable bowel syndrome (IBS) is a common functional bowel disorder characterized by abdominal pain and visceral hypersensitivity. Reducing visceral hypersensitivity is the key to effectively relieving abdominal pain in IBS. Increasing evidence has confirmed that the thalamic nucleus reuniens (Re) and 5-hydroxytryptamine (5-HT) neurotransmitter system play an important role in the development of colorectal visceral pain, whereas the exact mechanisms remain largely unclear. In this study, we found that high expression of the 5-HT2B receptors in the Re glutamatergic neurons promoted colorectal visceral pain. Specifically, we found that neonatal maternal deprivation (NMD) mice exhibited visceral hyperalgesia and enhanced spontaneous synaptic transmission in the Re brain region. Colorectal distension (CRD) stimulation induced a large amount of c-Fos expression in the Re brain region of NMD mice, predominantly in glutamatergic neurons. Furthermore, optogenetic manipulation of glutamatergic neuronal activity in the Re altered colorectal visceral pain responses in CON and NMD mice. In addition, we demonstrated that 5-HT2B receptor expression on the Re glutamatergic neurons was upregulated and ultimately promoted colorectal visceral pain in NMD mice. These findings suggest a critical role of the 5HT2B receptors on the Re glutamatergic neurons in the regulation of colorectal visceral pain.


Assuntos
Neurônios , Receptor 5-HT2B de Serotonina , Dor Visceral , Animais , Dor Visceral/metabolismo , Dor Visceral/fisiopatologia , Neurônios/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Masculino , Camundongos , Ácido Glutâmico/metabolismo , Privação Materna , Camundongos Endogâmicos C57BL , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Colo/metabolismo , Colo/inervação , Reto/inervação , Animais Recém-Nascidos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos Ventrais do Tálamo/metabolismo
4.
Cell Prolif ; : e13659, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773866

RESUMO

Aberrant A-to-I RNA editing, mediated by ADAR1 has been found to be associated with increased tumourigenesis and the development of chemotherapy resistance in various types of cancer. Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive malignancy with a poor prognosis, and overcoming chemotherapy resistance poses a significant clinical challenge. This study aimed to clarify the roles of ADAR1 in tumour resistance to cisplatin in iCCA. We discovered that ADAR1 expression is elevated in iCCA patients, particularly in those resistant to cisplatin, and associated with poor clinical outcomes. Downregulation of ADAR1 can increase the sensitivity of iCCA cells to cisplatin treatment, whereas its overexpression has the inverse effect. By integrating RNA sequencing and Sanger sequencing, we identified BRCA2, a critical DNA damage repair gene, as a downstream target of ADAR1 in iCCA. ADAR1 mediates the A-to-I editing in BRCA2 3'UTR, inhibiting miR-3157-5p binding, consequently increasing BRCA2 mRNA and protein levels. Furthermore, ADAR1 enhances cellular DNA damage repair ability and facilitates cisplatin resistance in iCCA cells. Combining ADAR1 targeting with cisplatin treatment markedly enhances the anticancer efficacy of cisplatin. In conclusion, ADAR1 promotes tumour progression and cisplatin resistance of iCCA. ADAR1 targeting could inform the development of innovative combination therapies for iCCA.

5.
CNS Neurosci Ther ; 30(2): e14587, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421142

RESUMO

INTRODUCTION: Neonatal stress disrupts brain development and increases the risk of neurological disorders later in life. However, the impact of neonatal stress on the development of the glymphatic system and susceptibility to Parkinson's disease (PD) remains largely unknown. METHODS: Neonatal maternal deprivation (NMD) was performed on mice for 14 consecutive days to model chronic neonatal stress. Adeno-associated virus expressing A53T-α-synuclein (α-syn) was injected into the substantia nigra to establish PD model mice. Glymphatic activity was determined using in vivo magnetic resonance imaging, ex vivo fluorescence imaging and microplate assay. The transcription and expression of aquaporin-4 (AQP4) and other molecules were evaluated by qPCR, western blotting, and immunofluorescence. Animal's responses to NMD and α-syn overexpression were observed using behavioral tests. RESULTS: Glymphatic activity was impaired in adult NMD mice. AQP4 polarization and platelet-derived growth factor B (PDGF-B) signaling were reduced in the frontal cortex and hippocampus of both young and adult NMD mice. Furthermore, exogenous α-syn accumulation was increased and PD-like symptoms were aggravated in adult NMD mice. CONCLUSION: The results demonstrated that NMD could disrupt the development of the glymphatic system through PDGF-B signaling and increase the risk of PD later in life, indicating that alleviating neonatal stress could be beneficial in protecting the glymphatic system and reducing susceptibility to neurodegeneration.


Assuntos
Sistema Glinfático , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Sistema Glinfático/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Substância Negra , Modelos Animais de Doenças
6.
Cancer Lett ; 585: 216640, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38290659

RESUMO

Gemcitabine, a pivotal chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC), frequently encounters drug resistance, posing a significant clinical challenge with implications for PDAC patient prognosis. In this study, employing an integrated approach involving bioinformatic analyses from multiple databases, we unveil CSNK2A1 as a key regulatory factor. The patient-derived xenograft (PDX) model further substantiates the critical role of CSNK2A1 in gemcitabine resistance within the context of PDAC. Additionally, targeted silencing of CSNK2A1 expression significantly enhances sensitivity of PDAC cells to gemcitabine treatment. Mechanistically, CSNK2A1's transcriptional regulation is mediated by H3K27 acetylation in PDAC. Moreover, we identify CSNK2A1 as a pivotal activator of autophagy, and enhanced autophagy drives gemcitabine resistance. Silmitasertib, an established CSNK2A1 inhibitor, can effectively inhibit autophagy. Notably, the combinatorial treatment of Silmitasertib with gemcitabine demonstrates remarkable efficacy in treating PDAC. In summary, our study reveals CSNK2A1 as a potent predictive factor for gemcitabine resistance in PDAC. Moreover, targeted CSNK2A1 inhibition by Silmitasertib represents a promising therapeutic strategy to restore gemcitabine sensitivity in PDAC, offering hope for improved clinical outcomes.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Autofagia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética
7.
CNS Neurosci Ther ; 30(4): e14534, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37994678

RESUMO

AIMS: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, but its pathogenesis remains incompletely understood, particularly the involvements of central nervous system sensitization in colorectal visceral pain. Our study was to investigate whether the paraventricular thalamus (PVT) projected to the insular cortex (IC) to regulate colorectal visceral pain in neonatal colonic inflammation (NCI) mice and underlying mechanisms. METHODS: We applied optogenetic, chemogenetic, or pharmacological approaches to manipulate the glutamatergicPVT-IC pathway. Fiber photometry was used to assess neuronal activity. Electromyography activities in response to colorectal distension (CRD) were measured to evaluate the colorectal visceral pain. RESULTS: NCI enhanced c-Fos expression and calcium activity upon CRD in the ICGlu, and optogenetic manipulation of them altered colorectal visceral pain responses accordingly. Viral tracing indicated that the PVTGlu projected to the ICGlu. Optogenetic manipulation of PVTGlu changed colorectal visceral pain responses. Furthermore, selective optogenetic modulation of PVT projections in the IC influenced colorectal visceral pain, which was reversed by chemogenetic manipulation of downstream ICGlu. CONCLUSIONS: This study identified a novel PVT-IC neural circuit playing a critical role in colorectal visceral pain in a mouse model of IBS.


Assuntos
Neoplasias Colorretais , Síndrome do Intestino Irritável , Dor Visceral , Animais , Camundongos , Dor Visceral/metabolismo , Síndrome do Intestino Irritável/metabolismo , Córtex Insular , Tálamo , Inflamação
8.
Biochem Biophys Res Commun ; 683: 149114, 2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-37857164

RESUMO

Long noncoding RNA (lncRNA) is implicated in both cancer development and pain process. However, the role of lncRNA in the development of cancer-induced bone pain (CIBP) is unclear. LncRNA NONRATT014888.2 is highly expressed in tibia related dorsal root ganglions (DRGs) in CIBP rats which function is unknown. CIBP was induced by injection of Walker 256 mammary gland tumor cells into the tibia canal of female SD rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of rats were measured. Down-regulation of NONRATT014888.2 by siRNA in CIBP rats markedly attenuated hind-paw mechanical pain hypersensitivity. LncRNA-predicted target mRNAs analysis and mRNA sequencing results cued Socs3, Npr3 were related with NONRATT014888.2. Intrathecal injection of NONRATT014888.2-siR206 upregulated Npr3 both in mRNA and protein level. Npr3 was co-expressed in NONRATT014888.2-positive DRGs neurons and mainly located in cytoplasm, but not in Glial fibrillary acidic protein (GFAP)-positive cells. Intrathecal injection of ADV-Npr3 upregulated Npr3 expression and enhanced the PWT of CIBP rats. Our results suggest that upregulated lncRNA NONRATT014888.2 contributed to hyperalgesia in CIBP rats, and the mechanism may through downregulation of Npr3.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Neoplasias , RNA Longo não Codificante , Ratos , Feminino , Animais , RNA Longo não Codificante/genética , Regulação para Baixo , Ratos Sprague-Dawley , Dor/genética , Dor/metabolismo , Dor do Câncer/genética , Dor do Câncer/patologia , Hiperalgesia/genética , RNA Mensageiro/metabolismo , Peptídeos Natriuréticos/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G356-G367, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37529842

RESUMO

Chronic visceral pain is a common symptom of irritable bowel syndrome (IBS). Exosomes are involved in the development of pain. Rab27a can mediate the release of exosomes. The purpose of this study is to investigate how Rab27a-mediated exosome secretion in the anterior cingulate cortex (ACC) regulates visceral hyperalgesia induced with neonatal maternal deprivation (NMD) in adult mice. The colorectal distension method was adopted to measure visceral pain. The BCA protein assay kit was applied to detect the exosome protein concentration. Western blotting, quantitative PCR, and immunofluorescence technique were adopted to detect the expression of Rab27a and the markers of exosomes. Exosomes extracted from ACC were more in NMD mice than in control (CON) mice. Injection of the exosome-specific inhibitor GW4869 in ACC attenuated colorectal visceral pain of NMD mice. Injection of NMD-derived exosomes produced colorectal visceral pain in CON mice. Rab27a was upregulated in ACC of NMD mice. Rab27a was highly expressed in ACC neurons of NMD mice, rather than astrocytes and microglia. Injection of Rab27a-siRNA reduced the release of exosomes and attenuated the colorectal visceral pain in NMD mice. This study suggested that overexpression of Rab27a increased exosome secretion in ACC neurons, thus contributing to visceral hyperalgesia in NMD mice.NEW & NOTEWORTHY This work demonstrated that the expression of Rab27a in the anterior cingulate cortex was upregulated, which mediated multivesicular bodies trafficking to the plasma membrane and led to the increased release of neuronal exosomes, thus contributing to colorectal visceral pain in neonatal maternal deprivation (NMD) mice. Blocking the release of exosomes or downregulation of Rab27a could alleviate colorectal visceral pain in NMD mice. These data may provide a promising strategy for the treatment of visceral pain in irritable bowel syndrome patients.


Assuntos
Neoplasias Colorretais , Exossomos , Síndrome do Intestino Irritável , Dor Visceral , Camundongos , Animais , Giro do Cíngulo , Dor Visceral/metabolismo , Hiperalgesia/etiologia , Privação Materna , Exossomos/metabolismo , Proteínas rab27 de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP/metabolismo
10.
Mol Ther ; 31(2): 503-516, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384875

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with poor prognosis. Gemcitabine-based chemotherapy has become one of the main modalities of its management. However, gemcitabine resistance frequently occurs, leading to failure of PDAC therapy. Platelet-derived growth factors (PDGFs) and their receptors play important roles in cancer progression and chemoresistance. We aimed to investigate the biological function and therapeutic significance of platelet-derived growth factor C (PDGFC) in drug-resistant PDAC. Our study showed that PDGFC was abnormally highly expressed in gemcitabine-resistant PDAC. Silencing PDGFC expression can enhance the therapeutic effect of gemcitabine on PDAC. Mechanistically, the transcription of PDGFC is mediated by H3K27 acetylation, and PDGFC promotes gemcitabine resistance by activating the PDGFR-PI3K-AKT signaling pathway. The PDGFR inhibitor imatinib inhibits the PDGFR pathway. Imatinib and gemcitabine have a synergistic effect on the treatment of PDAC, and imatinib can significantly enhance the anti-tumor effect of gemcitabine in a drug-resistant PDAC patient-derived xenograft model. In conclusion, PDGFC is a potential predictor of gemcitabine-resistant PDAC. Imatinib inhibits PDGFR activation to promote gemcitabine sensitivity in PDAC. Combined modality regimen of imatinib and gemcitabine is likely to translate into clinical trial for the treatment of PDGFC-associated gemcitabine-resistant patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Desoxicitidina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos/genética
11.
Mol Pain ; 19: 17448069221149834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36550612

RESUMO

Irritable bowel syndrome (IBS) related chronic visceral pain affects 20% of people worldwide. The treatment options are very limited. Although the scholarly reviews have appraised the potential effects of the intestinal microbiota on intestinal motility and sensation, the exact mechanism of intestinal microbiota in IBS-like chronic visceral pain remains largely unclear. The purpose of this study is to investigate whether Folic Acid (FA) attenuated visceral pain and its possible mechanisms. Chronic visceral hyperalgesia was induced in rats by neonatal colonic inflammation (NCI). 16S rDNA analysis of fecal samples from human subjects and rats was performed. Patch clamp recording was used to determine synaptic transmission of colonic-related spinal dorsal horn. Alpha diversity of intestinal flora was increased in patients with IBS, as well as the obviously increased abundance of Clostridiales order (a main bacteria producing hydrogen sulfide). The hydrogen sulfide content was positive correlation with visceral pain score in patients with IBS. Consistently, NCI increased Clostridiales frequency and hydrogen sulfide content in feces of adult rats. Notably, the concentration of FA was markedly decreased in peripheral blood of IBS patients compared with non-IBS human subjects. FA supplement alleviated chronic visceral pain and normalized the Clostridiales frequency in NCI rats. In addition, FA supplement significantly reduced the frequency of sEPSCs of neurons in the spinal dorsal horn of NCI rats. Folic Acid treatment attenuated chronic visceral pain of NCI rats through reducing hydrogen sulfide production from Clostridiales in intestine.


Assuntos
Sulfeto de Hidrogênio , Síndrome do Intestino Irritável , Dor Visceral , Humanos , Adulto , Ratos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Ratos Sprague-Dawley , Clostridiales , Ácido Fólico/farmacologia , Ácido Fólico/uso terapêutico , Hidrogênio , Dor Visceral/tratamento farmacológico , Inflamação , Sulfetos
12.
J Clin Ultrasound ; 50(9): 1436-1442, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36223254

RESUMO

OBJECTIVES: To evaluate the sonographic features of secondary involvement of skin and subcutaneous tissues by hematologic malignancies. METHODS: A review of the ultrasound and pathology databases yielded 10 cases with 13 skin and subcutaneous tissue lesions secondary to hematologic neoplasms, which were confirmed by pathology. We used ultrasound to assess the number, location, size, depth of involvement, echogenicity, and vascularity of the lesions. RESULTS: The study involved five male and five female patients, including four leukemia, two multiple myeloma, and four lymphoma patients. The average age was 45 years (17-66 years). Three patients presented with one lesion, four with two lesions, and three with more than two lesions. All the lesions were located in the trunk and extremities. The lesions ranged from 1.2 to 8.3 cm in size. A total of 10 lesions involved subcutaneous fat tissue. A total of 10 lesions displayed hypoechoic foci within a hyperechoic background, and three appeared hypoechoic, and most of them exhibited abundant vascularity (12 of 13 lesions). CONCLUSIONS: Secondary involvement of skin and subcutaneous tissues by hematologic malignancies often present with multiple palpable masses showing the following ultrasound features: (1) subcutaneous fat infiltration, (2) hypoechoic foci with a hyperechoic background, and (3) abundant vascularity.


Assuntos
Neoplasias Hematológicas , Tela Subcutânea , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Tela Subcutânea/diagnóstico por imagem , Estudos Retrospectivos , Ultrassonografia , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/diagnóstico por imagem
13.
Channels (Austin) ; 16(1): 137-147, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35754325

RESUMO

ATP-sensitive K+ (KATP) channel couples membrane excitability to intracellular energy metabolism. Maintaining KATP channel surface expression is key to normal insulin secretion, blood pressure and cardioprotection. However, the molecular mechanisms regulating KATP channel internalization and endocytic recycling, which directly affect the surface expression of KATP channels, are poorly understood. Here we used the cardiac KATP channel subtype, Kir6.2/SUR2A, and characterized Rab35 GTPase as a key regulator of KATP channel endocytic recycling. Electrophysiological recordings and surface biotinylation assays showed decreased KATP channel surface density with co-expression of a dominant negative Rab35 mutant (Rab35-DN), but not other recycling-related Rab GTPases, including Rab4, Rab11a and Rab11b. Immunofluorescence images revealed strong colocalization of Rab35-DN with recycling Kir6.2. Rab35-DN minimized the recycling rate of KATP channels. Rab35 also regulated KATP channel current amplitude in isolated adult cardiomyocytes by affecting its surface expression but not channel properties, which validated its physiologic relevance and the potential of pharmacologic target for treating the diseases with KATP channel trafficking defects.


Assuntos
GTP Fosfo-Hidrolases , Canais KATP , Trifosfato de Adenosina/metabolismo , Transporte Biológico , GTP Fosfo-Hidrolases/metabolismo , Canais KATP/genética , Canais KATP/metabolismo , Miócitos Cardíacos/metabolismo
14.
Neurosci Bull ; 38(4): 359-372, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34890016

RESUMO

Irritable bowel syndrome is a gastrointestinal disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that injury and inflammation during the neonatal period have long-term effects on tissue structure and function in the adult that may predispose to gastrointestinal diseases. In this study we aimed to investigate how the epigenetic regulation of DNA demethylation of the p2x7r locus guided by the transcription factor GATA binding protein 1 (GATA1) in spinal astrocytes affects chronic visceral pain in adult rats with neonatal colonic inflammation (NCI). The spinal GATA1 targeting to DNA demethylation of p2x7r locus in these rats was assessed by assessing GATA1 function with luciferase assay, chromatin immunoprecipitation, patch clamp, and interference in vitro and in vivo. In addition, a decoy oligodeoxynucleotide was designed and applied to determine the influence of GATA1 on the DNA methylation of a p2x7r CpG island. We showed that NCI caused the induction of GATA1, Ten-eleven translocation 3 (TET3), and purinergic receptors (P2X7Rs) in astrocytes of the spinal dorsal horn, and demonstrated that inhibiting these molecules markedly increased the pain threshold, inhibited the activation of astrocytes, and decreased the spinal sEPSC frequency. NCI also markedly demethylated the p2x7r locus in a manner dependent on the enhancement of both a GATA1-TET3 physical interaction and GATA1 binding at the p2x7r promoter. Importantly, we showed that demethylation of the p2x7r locus (and the attendant increase in P2X7R expression) was reversed upon knockdown of GATA1 or TET3 expression, and demonstrated that a decoy oligodeoxynucleotide that selectively blocked the GATA1 binding site increased the methylation of a CpG island in the p2x7r promoter. These results demonstrate that chronic visceral pain is mediated synergistically by GATA1 and TET3 via a DNA-demethylation mechanism that controls p2x7r transcription in spinal dorsal horn astrocytes, and provide a potential therapeutic strategy by targeting GATA1 and p2x7r locus binding.


Assuntos
Astrócitos , Fator de Transcrição GATA1/metabolismo , Dor Visceral , Animais , Astrócitos/metabolismo , Desmetilação do DNA , Epigênese Genética , Inflamação/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Dor Visceral/metabolismo
15.
Pathol Res Pract ; 229: 153739, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34920294

RESUMO

OBJECTIVES: To evaluate the expression and differential diagnostic significance of CyclinD1 and D2-40 in follicular neoplasm (FN) and other thyroid adenomatoid lesions. METHODS: A total of 144 cases of thyroid adenomatoid lesions were enrolled. Immunohistochemistry for CyclinD1 and D2-40 was performed. RESULTS: We found two patterns of CyclinD1 expression: nuclear (N) and cytoplasmic (C). The expression of N-CyclinD1 / C-CyclinD1 in FN (77.4%, 48/62; 50.0%, 31/62) was much higher than that in multinodular goiters with dominant nodules (MNG-DN) (16.4%, 10/61; 4.9%, 3/61) (p < 0.05). In contrast, the expression of D2-40 in MNG-DN (82.0%,50/61) was much higher than that in FN (4.8%, 3/62) (p < 0.05). In addition, unique staining patterns were observed: CyclinD1 showed no immunostaining only in all 8 cases of oncocytic cell tumors (OCT); D2-40 staining showed the characteristic wide distribution of lymphatic vessels in all 8 cases of poorly differentiated thyroid carcinoma (PDTC). Finally, the expression of CyclinD1 and D2-40 did not differ among follicular thyroid adenoma and follicular thyroid carcinoma / noninvasive follicular thyroid neoplasm with papillary-like nuclear features (p > 0.05). CONCLUSIONS: CyclinD1 and D2-40 are helpful diagnostic markers of FN, which can assist to discern FN from MNG-DN / OCT / PDTC.


Assuntos
Ciclina D1/biossíntese , Glicoproteínas de Membrana/biossíntese , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/metabolismo , Adolescente , Adulto , Idoso , Ciclina D1/análise , Feminino , Humanos , Imuno-Histoquímica , Masculino , Glicoproteínas de Membrana/análise , Pessoa de Meia-Idade , Neoplasias da Glândula Tireoide/química , Adulto Jovem
16.
17.
Brain Res ; 1772: 147663, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555415

RESUMO

Neuropathic pain is a common complication of diabetes mellitus with poorly relieved by conventional analgesics. Metformin, a first-line drug for type 2 diabetes, reduces blood glucose by activating adenosine monophosphate protein kinase (AMPK) signalling system. However, the effect of Metformin on diabetic neuropathic pain is still unknown. In the present study, we showed that Metformin was capable of attenuating diabetes induced mechanical allodynia, and the analgesia effect could be blocked by Compound C (an AMPK inhibitor). Importantly, Metformin enhanced the phosphorylation level of AMPK in L4-6 DRGs of diabetic rats but not affect the expression of total AMPK. Intrathecal injection of AICAR (an AMPK agonist) could activate AMPK and alleviate the mechanical allodynia of diabetic rats. Additionally, phosphorylated AMPK and NF-κB was co-localized in small and medium neurons of L4-6 DRGs. Interestingly, the regulation of NF-κB in diabetic rats was obviously reduced when AMPK was activated by AICAR. Notably, Metformin could decrease NF-κB expression in L4-6 DRGs of diabetic rats, but the decrease was blocked by Compound C. In conclusion, Metformin alleviates diabetic mechanical allodynia via activation of AMPK signaling pathway in L4-6 DRGs of diabetic rats, which might be mediated by the downregulation of NF-κB, and this providing certain basis for Metformin to become a potential drug in the clinical treatment of diabetic neuropathic pain.


Assuntos
Neuropatias Diabéticas/tratamento farmacológico , Gânglios Espinais/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metformina/farmacologia , NF-kappa B/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/farmacologia
18.
Int J Biol Sci ; 17(11): 2811-2825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345209

RESUMO

Chemotherapy plays an irreplaceable role in the treatment of GC, but currently available chemotherapeutic drugs are not ideal. The application of medicinal plants is an important direction for new drug discovery. Through drug screening of GC organoids, we determined that ailanthone has an anticancer effect on GC cells in vitro and in vivo. We also found that AIL can induce DNA damage and apoptosis in GC cells. Further transcriptome sequencing of PDX tissue indicated that AIL inhibited the expression of XRCC1, which plays an important role in DNA damage repair, and the results were also confirmed by western blotting. In addition, we found that AIL inhibited the expression of P23 and that inhibition of P23 decreased the expression of XRCC1, indicating that AIL can regulate XRCC1 via P23. The results of coimmunoprecipitation showed that AIL can inhibit the binding of P23 and XRCC1 to HSP90. These findings indicate that AIL can induce DNA damage and apoptosis in GC cells. Meanwhile, AIL can decrease XRCC1 activity by downregulating P23 expression to inhibit DNA damage repair. The present study sheds light on the potential application of new drugs isolated from natural medicinal plants for GC therapy.


Assuntos
Apoptose/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Piridinolcarbamato/metabolismo , Quassinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Ailanthus/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Regulação para Baixo , Descoberta de Drogas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Gástricas/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Biochem Biophys Res Commun ; 572: 98-104, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364296

RESUMO

BACKGROUND: Cancer-induced bone pain (CIBP) is one of the most severe types of chronic pain which the involved mechanisms are largely unknown. LncRNA has been found to play critical roles in chronic pain. However, its function in peripheral nervous system in CIBP remains unknown. Identifying the different lncRNA expression pattern is essential for understanding the genetic mechanisms underlying the pathogenesis of CIBP. METHODS: The model was induced by injection of Walker 256 cells into the rat tibia canal. Behavior tests and X-ray microtomography (MicroCT) analysis were performed to verify the model's establishment. L2-L5 DRGs were harvested at 14-day post operation and the differential lncRNA and mRNA expression patterns were investigated by microarray analyses. RT-qPCR analysis and RNA interference were performed for expression and function verifications. Bioinformatics analysis was conducted for further function study. RESULTS: CIBP rats showed hyperalgesia and the MicroCT analysis showed tibia destruction. A total of 73 lncRNAs and 187 mRNAs were dysregulated. The expressions of several lncRNAs and mRNAs were validated by RT-qPCR experiment. Biological analyses showed that the changed mRNAs were mainly related to cellular and single-organism process, cell and cell part, binding function and immune system pathway. The top 30 lncRNA-predicted mRNAs are mainly related to peroxisome, DNA-dependent DNA replication, double-stranded RNA binding, tuberculosis and purine metabolism. 56 lncRNAs (30 downregulated and 26 upregulated) and 179 DEGs (35 downregulated and 144 upregulated) have a significant correlation and constructed a co-expression network. Downregulation of lncRNA NONRATT021203.2 by siRNA intrathecal injection increased PWL and WBD in CIBP rats, alleviating cancer induced bone hyperalgesia. CONCLUSION: LncRNA played important roles in regulation of CIBP or mRNA expression in peripheral neuropathy in CIBP. These alterd mRNAs and lncRNAs might be potential therapeutic targets for the treatment of CIBP.


Assuntos
Neoplasias Ósseas/genética , Dor do Câncer/genética , Gânglios Espinais/patologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Animais , Neoplasias Ósseas/patologia , Dor do Câncer/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Ratos
20.
Front Oncol ; 11: 630241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842336

RESUMO

OBJECTIVE: Non-small cell lung cancer (NSCLC) is a common malignant tumor, which has high incidence and low the 5-year survival rate. Long non-coding RNAs (lncRNAs) play critical roles in carcinoma occurrence and metastasis. Herein, our aim was to investigate the effects of lncRNA SNHG19 in NSCLC progression. MATERIALS AND METHODS: Long non-coding RNA Small Nucleolar RNA Host Gene 19 (lncRNA SNHG19) expression level was measured by bioinformatics and qRT-PCR. Edu, Transwell, and scratch assays were performed to explore the role of si-SNHG19 or SNHG19 on NSCLC progression. Luciferase assay was used to verify the relationship between SNHG19/E2F7 and miR-137. The experiment of Xenograft was used for exploring the function of SNHG19 in vivo. RESULTS: SNHG19 was upregulated in cancer tissues, patients plasma and cell lines of NSCLC. Knockdown of SNHG19 inhibited cell proliferation, migration, and invasion. Luciferase assay confirmed that SNHG19 regulated E2F7 expression via interacting with miR-137. Overexpression of SNHG19 accelerated NSCLC tumor progression via miR-137/E2F7 axis both in vitro and in vivo. CONCLUSIONS: Our results clarified the SNHG19 function for the first time, and SNHG19 promoted the progression of NSCLC, which was mediated by the miR-137/E2F7 axis. This study might provide new understanding and targets for NSCLC diagnosis and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA