Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(5): 2459-2478, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29361176

RESUMO

FK506 binding proteins (FKBPs) catalyze the interconversion of cis-trans proline conformers in proteins. Importantly, FK506 drugs have anti-cancer and neuroprotective properties, but the effectors and mechanisms underpinning these properties are not well understood because the cellular function(s) of most FKBP proteins are unclear. FKBP25 is a nuclear prolyl isomerase that interacts directly with nucleic acids and is associated with several DNA/RNA binding proteins. Here, we show the catalytic FKBP domain binds microtubules (MTs) directly to promote their polymerization and stabilize the MT network. Furthermore, FKBP25 associates with the mitotic spindle and regulates entry into mitosis. This interaction is important for mitotic spindle dynamics, as we observe increased chromosome instability in FKBP25 knockdown cells. Finally, we provide evidence that FKBP25 association with chromatin is cell-cycle regulated by Protein Kinase C phosphorylation. This disrupts FKBP25-DNA contacts during mitosis while maintaining its interaction with the spindle apparatus. Collectively, these data support a model where FKBP25 association with chromatin and MTs is carefully choreographed to ensure faithful genome duplication. Additionally, they highlight that FKBP25 is a MT-associated FK506 receptor and potential therapeutic target in MT-associated diseases.


Assuntos
Ciclo Celular , Microtúbulos/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Linhagem Celular , DNA/metabolismo , Instabilidade Genômica , Humanos , Mitose , Peptidilprolil Isomerase/fisiologia , Fosforilação , Polimerização , Proteína Quinase C/metabolismo , Proteínas de Ligação a Tacrolimo/fisiologia
2.
Nucleic Acids Res ; 45(20): 11989-12004, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29036638

RESUMO

Prolyl isomerases are defined by a catalytic domain that facilitates the cis-trans interconversion of proline residues. In most cases, additional domains in these enzymes add important biological function, including recruitment to a set of protein substrates. Here, we report that the N-terminal basic tilted helix bundle (BTHB) domain of the human prolyl isomerase FKBP25 confers specific binding to double-stranded RNA (dsRNA). This binding is selective over DNA as well as single-stranded oligonucleotides. We find that FKBP25 RNA-association is required for its nucleolar localization and for the vast majority of its protein interactions, including those with 60S pre-ribosome and early ribosome biogenesis factors. An independent mobility of the BTHB and FKBP catalytic domains supports a model by which the N-terminus of FKBP25 is anchored to regions of dsRNA, whereas the FKBP domain is free to interact with neighboring proteins. Apart from the identification of the BTHB as a new dsRNA-binding module, this domain adds to the growing list of auxiliary functions used by prolyl isomerases to define their primary cellular targets.


Assuntos
Conformação de Ácido Nucleico , Domínios Proteicos , Estrutura Secundária de Proteína , RNA de Cadeia Dupla/química , Proteínas de Ligação a Tacrolimo/química , Sequência de Bases , Western Blotting , Domínio Catalítico , Linhagem Celular Tumoral , Células HEK293 , Humanos , Microscopia Confocal , Modelos Moleculares , Ligação Proteica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA