Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(11): 12557-12572, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32092249

RESUMO

Extrusion-based bioprinting, also known as 3D bioplotting, is a powerful tool for the fabrication of tissue equivalents with spatially defined cell distribution. Even though considerable progress has been made in recent years, there is still a lack of bioinks which enable a tissue-like cell response and are plottable at the same time with good shape fidelity. Herein, we report on the development of a bioink which includes fresh frozen plasma from full human blood and thus a donor/patient-specific protein mixture. By blending of the plasma with 3 w/v% alginate and 9 w/v% methylcellulose, a pasty bioink (plasma-alg-mc) was achieved, which could be plotted with high accuracy and furthermore allowed bioplotted mesenchymal stromal cells (MSC) and primary osteoprogenitor cells to spread within the bioink. In a second step, the novel plasma-based bioink was combined with a plottable self-setting calcium phosphate cement (CPC) to fabricate bone-like tissue constructs. The CPC/plasma-alg-mc biphasic constructs revealed open porosity over the entire time of cell culture (35 d), which is crucial for bone tissue engineered grafts. The biphasic structures could be plotted in volumetric and clinically relevant dimensions and complex shapes could be also generated, as demonstrated for a scaphoid bone model. The plasma bioink potentiated that bioplotted MSC were not harmed by the setting process of the CPC. Latest after 7 days, MSC migrated from the hydrogel to the CPC surface, where they proliferated to 20-fold of the initial cell number covering the entire plotted constructs with a dense cell layer. For bioplotted and osteogenically stimulated osteoprogenitor cells, a significantly increased alkaline phosphatase activity was observed in CPC/plasma-alg-mc constructs in comparison to plasma-free controls. In conclusion, the novel plasma-alg-mc bioink is a promising new ink for several forms of bioprinted tissue equivalents and especially gainful for the combination with CPC for enhanced, biofabricated bone-like constructs.


Assuntos
Materiais Biocompatíveis/farmacologia , Bioimpressão/métodos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Plasma/química , Alginatos , Materiais Biocompatíveis/química , Osso e Ossos/citologia , Fosfatos de Cálcio , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidroxiapatitas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Engenharia Tecidual
2.
J Biomed Mater Res A ; 107(12): 2629-2642, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31376340

RESUMO

Layer-by-layer (LBL) BioAssembly method was developed to enhance the control of cell distribution within 3D scaffolds for tissue engineering applications. The objective of this study was to evaluate in vivo the development of blood vessels within LBL bioassembled membranes seeded with human primary cells, and to compare it to cellularized massive scaffolds. Poly(lactic) acid (PLA) membranes fabricated by fused deposition modeling were seeded with monocultures of human bone marrow stromal cells or with cocultures of these cells and endothelial progenitor cells. Then, four cellularized membranes were assembled in LBL constructs. Early osteoblastic and endothelial cell differentiation markers, alkaline phosphatase, and von Willebrand's factor, were expressed in all layers of assemblies in homogenous manner. The same kind of LBL assemblies as well as cellularized massive scaffolds was implanted subcutaneously in mice. Human cells were observed in all scaffolds seeded with cells, but not in the inner parts of massive scaffolds. There were significantly more blood vessels observed in LBL bioassemblies seeded with cocultures compared to all other samples. LBL bioassembly of PLA membranes seeded with a coculture of human cells is an efficient method to obtain homogenous cell distribution and blood vessel formation within the entire volume of a 3D composite scaffold.


Assuntos
Técnicas de Cocultura/instrumentação , Células Progenitoras Endoteliais/citologia , Membranas Artificiais , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Diferenciação Celular , Células Cultivadas , Células Progenitoras Endoteliais/transplante , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Neovascularização Fisiológica , Impressão Tridimensional , Engenharia Tecidual
3.
J Biomed Mater Res A ; 106(4): 887-894, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29105943

RESUMO

Autografts remain the gold standard for orthopedic transplantations. However, to overcome its limitations, bone tissue engineering proposes new strategies. This includes the development of new biomaterials such as synthetic polymers, to serve as scaffold for tissue production. The objective of this present study was to produce poly(lactic) acid (PLA) scaffolds of different pore size using fused deposition modeling (FDM) technique and to evaluate their physicochemical and biological properties. Structural, chemical, mechanical, and biological characterizations were performed. We successfully fabricated scaffolds of three different pore sizes. However, the pore dimensions were slightly smaller than expected. We found that the 3D printing process induced decreases in both, PLA molecular weight and degradation temperatures, but did not change the semicrystalline structure of the polymer. We did not observe any effect of pore size on the mechanical properties of produced scaffolds. After the sterilization by γ irradiation, scaffolds did not exhibit any cytotoxicity towards human bone marrow stromal cells (HBMSC). Finally, after three and seven days of culture, HBMSC showed high viability and homogenous distribution irrespective of pore size. Thus, these results suggest that FDM technology is a fast and reproducible technique that can be used to fabricate tridimensional custom-made scaffolds for tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 887-894, 2018.


Assuntos
Osso e Ossos/fisiologia , Poliésteres/farmacologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Osso e Ossos/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Temperatura
4.
J Mater Sci Mater Med ; 28(5): 78, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28386854

RESUMO

The conventional tissue engineering is based on seeding of macroporous scaffold on its surface ("top-down" approach). The main limitation is poor cell viability in the middle of the scaffold due to poor diffusion of oxygen and nutrients and insufficient vascularization. Layer-by-Layer (LBL) bioassembly is based on "bottom-up" approach, which considers assembly of small cellularized blocks. The aim of this work was to evaluate proliferation and differentiation of human bone marrow stromal cells (HBMSCs) and endothelial progenitor cells (EPCs) in two and three dimensions (2D, 3D) using a LBL assembly of polylactic acid (PLA) scaffolds fabricated by 3D printing. 2D experiments have shown maintain of cell viability on PLA, especially when a co-cuture system was used, as well as adequate morphology of seeded cells. Early osteoblastic and endothelial differentiations were observed and cell proliferation was increased after 7 days of culture. In 3D, cell migration was observed between layers of LBL constructs, as well as an osteoblastic differentiation. These results indicate that LBL assembly of PLA layers could be suitable for BTE, in order to promote homogenous cell distribution inside the scaffold and gene expression specific to the cells implanted in the case of co-culture system.


Assuntos
Osso e Ossos/patologia , Membranas Artificiais , Poliésteres/química , Engenharia Tecidual/métodos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Osteoblastos/metabolismo , Osteogênese , Oxigênio/química , Fenótipo , Porosidade , Impressão Tridimensional , Ratos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA