Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1833(6): 1553-61, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23499873

RESUMO

A1/Bfl-1 is a NF-κB dependent, anti-apoptotic Bcl-2 family member that contains four Bcl-2 homology domains (BH) and an amphipathic C-terminal domain, and is expressed in endothelial cells (EC). Based on NF-κB reporter assays in bovine aortic EC, we have previously demonstrated that A1, like Bcl-2 and Bcl-xL, inhibits NF-κB activation. These results, however, do not fully translate when evaluating the cell's own NF-κB machinery in human EC overexpressing A1 by means of recombinant adenovirus (rAd.) mediated gene transfer. Indeed, overexpression of full-length A1 in human umbilical vein EC (HUVEC), and human dermal microvascular EC (HDMEC) failed to inhibit NF-κB activation. However, overexpression of a mutant lacking the C-terminal domain of A1 (A1ΔC) demonstrated a potent NF-κB inhibitory effect in these cells. Disparate effects of A1 and A1ΔC on NF-κB inhibition in human EC correlated with mitochondrial (A1) versus non-mitochondrial (A1ΔC) localization. In contrast, both full-length A1 and A1ΔC protected EC from staurosporine (STS)-induced cell death, indicating that mitochondrial localization was not necessary for A1's cytoprotective function in human EC. In conclusion, our data uncover a regulatory role for the C-terminal domain of A1 in human EC: anchoring A1 to the mitochondrion, which conserves but is not necessary for its cytoprotective function, or by its absence freeing A1 from the mitochondrion and uncovering an additional anti-inflammatory effect.


Assuntos
Anti-Inflamatórios/metabolismo , Derme/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose , Western Blotting , Bovinos , Proliferação de Células , Derme/citologia , Endotélio Vascular/citologia , Imunofluorescência , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Luciferases/metabolismo , Antígenos de Histocompatibilidade Menor , NF-kappa B/genética , NF-kappa B/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética
2.
Neurochem Res ; 38(5): 935-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423532

RESUMO

Neuropathic pain is a very common dysfunction caused by several types of nerve injury. This condition leads to a variety of pathological changes in central nervous system regions related to pain transmission. It has been demonstrated that nociception is modulated by reactive oxidative species and treatments with antioxidant compounds produce antinociceptive effects. Thus, the aim of the present study was to investigate oxidative parameters in spinal and supraspinal regions following sciatic nerve transection (SNT). In behavioral assessments, animals showed mechanical allodynia and a significant functional impairment following SNT, measured by von Frey hairs test and sciatic functional index, respectively. Superoxide dismutase activity was increased 3 and 7 days following SNT in cerebral cortex and brainstem. Catalase activity was also increased in cerebral cortex 3 days after SNT. Ascorbic acid levels were decreased 7 days in the spinal cord only in SNT group. We also showed an increase in lipid peroxidation in cerebral cortex and brainstem 3 days after surgery in SNT and sham groups. These results showed that supraspinal regions also exhibit changes in antioxidant activity after SNT and demonstrate an intricate relationship among antioxidant defenses in different regions of the neuro axis related to pain transmission.


Assuntos
Estresse Oxidativo , Nervo Isquiático/cirurgia , Animais , Comportamento Animal , Masculino , Ratos , Ratos Wistar
3.
Cell Mol Neurobiol ; 28(8): 1049-56, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18379870

RESUMO

Neuropathic pain occurs as a result of peripheral or central nervous system injury. Its pathophysiology involves mainly a central sensitization mechanism that may be correlated to many molecules acting in regions involved in pain processing, such as the spinal cord. It has been demonstrated that reactive oxygen species (ROS) and signaling molecules, such as the serine/threonine protein kinase Akt, are involved in neuropathic pain mechanisms. Thus, the aim of this study was to provide evidence of this relationship. Sciatic nerve transection (SNT) was used to induce neuropathic pain in rats. Western blot analysis of Akt and 4-hydroxy-2-nonenal (HNE)-Michael adducts, and measurement of hydrogen peroxide (H(2)O(2)) in the lumbosacral spinal cord were performed. The main findings were found seven days after SNT, when there was an increase in HNE-Michael adducts formation, total and p-Akt expression, and H(2)O(2) concentration. However, one and 15 days after SNT, H(2)O(2) concentration was raised in both sham (animals that were submitted to surgery without nerve injury) and SNT groups, showing the high sensibility of this ROS to nociceptive afferent stimuli, not only to neuropathic pain. p-Akt also increased in sham and SNT groups one day post injury, but at 3 and 7 days the increase occurred exclusively in SNT animals. Thus, there is crosstalk between intracellular signaling pathways and ROS, and these molecules can act as protective agents in acute pain situations or play a role in the development of chronic pain states.


Assuntos
Neuralgia/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Aldeídos/metabolismo , Animais , Western Blotting , Ativação Enzimática , Peróxido de Hidrogênio/metabolismo , Masculino , Neuralgia/patologia , Fosfoproteínas/metabolismo , Ratos , Ratos Wistar , Medula Espinal/enzimologia , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA