Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(37): 11600-5, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324894

RESUMO

Adaptive radiations play key roles in the generation of biodiversity and biological novelty, and therefore understanding the factors that drive them remains one of the most important challenges of evolutionary biology. Although both intrinsic innovations and extrinsic ecological opportunities contribute to diversification bursts, few studies have looked at the synergistic effect of such factors. Here we investigate the Teloschistales (Ascomycota), a group of >1,000 lichenized species with variation in species richness and phenotypic traits that hinted at a potential adaptive radiation. We found evidence for a dramatic increase in diversification rate for one of four families within this order--Teloschistaceae--which occurred ∼ 100 Mya (Late Cretaceous) and was associated with a switch from bark to rock and from shady to sun-exposed habitats. This adaptation to sunny habitats is likely to have been enabled by a contemporaneous key novel phenotypic innovation: the production in both vegetative structure (thallus) and fruiting body (apothecia) of anthraquinones, secondary metabolites known to protect against UV light. We found that the two ecological factors (sun exposure and rock substrate) and the phenotypic innovation (anthraquinones in the thallus) were all significant when testing for state-dependent shifts in diversification rates, and together they seem likely to be responsible for the success of the Teloschistaceae, one of the largest lichen-forming fungal lineages. Our results support the idea that adaptive radiations are driven not by a single factor or key innovation, but require a serendipitous combination of both intrinsic biotic and extrinsic abiotic and ecological factors.


Assuntos
Ascomicetos/fisiologia , Líquens/fisiologia , Luz Solar , Adaptação Fisiológica/genética , Antraquinonas/química , Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Dados de Sequência Molecular , Fenótipo , Filogenia , Pigmentação , Análise de Sequência de DNA , Árvores , Raios Ultravioleta
2.
J Phycol ; 48(4): 1020-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27009012

RESUMO

A molecular phylogeny was reconstructed from a culture collection of >150 isolates of epi-endophytic and endophytic green algae, based on nucleotide sequences of the plastid tufA and nuclear ITS2 loci. The cultures were isolated from a variety of algal hosts, notably the red algae Chondrus crispus, Mastocarpus stellatus, and Osmundea species, and the brown algae Chorda filum and Fucus serratus. The phylogeny revealed that in the Ulvales the majority of isolates fell into Acrochaete (Ulvellaceae), Ulva (Ulvaceae), Bolbocoleon (Bolbocoleaceae), and at least two unknown genera provisionally assigned to the Kornmanniaceae. Acrochaete was monophyletic. The genus was also more specious than previously described with 12 species, including up to six new species awaiting formal description. Isolates identified as Acrochaete repens, the type species of the genus, were polyphyletic. The remainder of the isolates were placed in the Ulotrichales. The results confirm that the endophytic habit supports a broad diversity of algal taxa and suggest that blade formation is a relatively recent innovation within the green algae.

3.
J Microbiol Methods ; 82(3): 319-23, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20624428

RESUMO

Fungi belonging to the Fusarium solani Species Complex (FSSC) are well known plant pathogens. In addition to being the causative agent of some superficial infections, FSSC has recently emerged as a group of common opportunistic moulds, mainly in patients with haematological malignancies. Molecular typing methods are essential in order to better understand the epidemiology of such opportunistic agents with the final goal of preventing contamination. A three-locus typing scheme has thus been developed for FSSC; based on polymorphisms in the domains of the ITS, EF-1 alpha, and RPB2 genes. This method is now considered to be a useful reference for phylogenetic and taxonomic studies. In other significant clinical fungi (e.g., Candida sp., Cryptococcus neoformans, and Aspergillus fumigatus), genes coding for metabolic enzymes have been widely used and proven to be very informative for diagnosis and epidemiology. The contribution of these genes has never been evaluated for Fusarium sp. and more specifically for F. solani Species Complex. Here, we have evaluated the contribution of 25 genes for diagnosis and epidemiological purposes. We then report a new five-locus MLST scheme useful for diagnosis and typing of clinical FSSC isolates. The method has been validated on 51 epidemiologically unrelated strains of FSSC and presents a high power of discrimination calculated at 0.991.


Assuntos
Microbiologia Ambiental , Fusarium/isolamento & purificação , Técnicas Genéticas , Técnicas de Tipagem Micológica/métodos , Micoses/microbiologia , Plantas/microbiologia , Proteínas Fúngicas/genética , Fusarium/classificação , Fusarium/genética , Humanos , Dados de Sequência Molecular , Micoses/diagnóstico , Doenças das Plantas/microbiologia
4.
Syst Biol ; 58(2): 224-39, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20525580

RESUMO

We present a 6-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of Fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the Fungi are resolved for the first time. Based on the 6-gene phylogeny we conducted a phylogenetic informativeness analysis of all 6 genes and a series of ancestral character state reconstructions that focused on morphology of sporocarps, ascus dehiscence, and evolution of nutritional modes and ecologies. A gene-by-gene assessment of phylogenetic informativeness yielded higher levels of informativeness for protein genes (RPB1, RPB2, and TEF1) as compared with the ribosomal genes, which have been the standard bearer in fungal systematics. Our reconstruction of sporocarp characters is consistent with 2 origins for multicellular sexual reproductive structures in Ascomycota, once in the common ancestor of Pezizomycotina and once in the common ancestor of Neolectomycetes. This first report of dual origins of ascomycete sporocarps highlights the complicated nature of assessing homology of morphological traits across Fungi. Furthermore, ancestral reconstruction supports an open sporocarp with an exposed hymenium (apothecium) as the primitive morphology for Pezizomycotina with multiple derivations of the partially (perithecia) or completely enclosed (cleistothecia) sporocarps. Ascus dehiscence is most informative at the class level within Pezizomycotina with most superclass nodes reconstructed equivocally. Character-state reconstructions support a terrestrial, saprobic ecology as ancestral. In contrast to previous studies, these analyses support multiple origins of lichenization events with the loss of lichenization as less frequent and limited to terminal, closely related species.


Assuntos
Ascomicetos/genética , Filogenia , Ascomicetos/classificação , Ascomicetos/citologia , Ecossistema , Genes Fúngicos , Reprodução
5.
Mycol Res ; 112(Pt 11): 1307-18, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18945603

RESUMO

Phylogenetic relationships of the lichen genus Polyblastia and closely related taxa in the family Verrucariaceae (Verrucariales, Chaetothyriomycetidae) were studied. A total of 130 sets of sequences (nuLSU rDNA, nuITS rDNA and RPB1 region A-D), including 129 newly generated sequences, were analysed. Phylogenetic relationships were inferred using a Bayesian approach based on two datasets. A first analysis of a larger, two-locus dataset (nuLSU and RPB1) for 128 members of the Verrucariaceae, confirmed the polyphyly of Polyblastia, Thelidium, Staurothele, and Verrucaria, as currently construed. The second analysis focused on 56 Polyblastia and allied taxa, but using an additional locus (nuITS rDNA) and two closely related outgroup taxa. The latter analysis revealed strongly supported groups, such as Polyblastia s. str., the Thelidium group (a mixture of Polyblastia, Thelidium, Staurothele and Verrucaria species). The genus Sporodictyon, which is here accepted, also accommodates Sporodictyon terrestre comb. nov. Morphological features traditionally used for characterizing Polyblastia, Thelidium, Staurothele and Verrucaria, such as spore septation and colour, occurrence of hymenial photobiont, involucrellum structure, and substrate preference, were found to be only partially consistent within the strongly supported clades, and thus are not always reliable features for characterizing natural groups.


Assuntos
Ascomicetos/classificação , Líquens/classificação , Filogenia , Ascomicetos/citologia , Ascomicetos/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Líquens/citologia , Líquens/genética , Dados de Sequência Molecular , Esporos Fúngicos/citologia
6.
Mycologia ; 98(6): 1018-28, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17486977

RESUMO

Pezizomycotina is the largest subphylum of Ascomycota and includes the vast majority of filamentous, ascoma-producing species. Here we report the results from weighted parsimony, maximum likelihood and Bayesian phylogenetic analyses of five nuclear loci (SSU rDNA, LSU rDNA, RPB1, RPB2 and EF-lalpha) from 191 taxa. Nine of the 10 Pezizomycotina classes currently recognized were represented in the sampling. These data strongly supported the monophyly of Pezizomycotina, Arthoniomycetes, Eurotiomycetes, Orbiliomycetes and Sordariomycetes. Pezizomycetes and Dothideomycetes also were resolved as monophyletic but not strongly supported by the data. Lecanoromycetes was resolved as paraphyletic in parsimony analyses but monophyletic in maximum likelihood and Bayesian analyses. Leotiomycetes was polyphyletic due to exclusion of Geoglossaceae. The two most basal classes of Pezizomycotina were Orbiliomycetes and Pezizomycetes, both of which comprise species that produce apothecial ascomata. The seven remaining classes formed a monophyletic group that corresponds to Leotiomyceta. Within Leotiomyceta, the supraclass clades of Leotiomycetes s.s. plus Sordariomycetes and Arthoniomycetes plus Dothideomycetes were resolved with moderate support.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Filogenia , Ascomicetos/ultraestrutura , Análise por Conglomerados , Biologia Computacional , DNA Fúngico/genética , DNA Ribossômico/genética , Microscopia Eletrônica de Varredura , Fator 1 de Elongação de Peptídeos/genética , RNA Polimerase II/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Homologia de Sequência
7.
Mycologia ; 98(6): 1088-103, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17486983

RESUMO

The Lecanoromycetes includes most of the lichen-forming fungal species (> 13500) and is therefore one of the most diverse class of all Fungi in terms of phenotypic complexity. We report phylogenetic relationships within the Lecanoromycetes resulting from Bayesian and maximum likelihood analyses with complementary posterior probabilities and bootstrap support values based on three combined multilocus datasets using a supermatrix approach. Nine of 10 orders and 43 of 64 families currently recognized in Eriksson's classification of the Lecanoromycetes (Outline of Ascomycota--2006 Myconet 12:1-82) were represented in this sampling. Our analyses strongly support the Acarosporomycetidae and Ostropomycetidae as monophyletic, whereas the delimitation of the largest subclass, the Lecanoromycetidae, remains uncertain. Independent of future delimitation of the Lecanoromycetidae, the Rhizocarpaceae and Umbilicariaceae should be elevated to the ordinal level. This study shows that recent classifications include several nonmonophyletic taxa at different ranks that need to be recircumscribed. Our phylogenies confirm that ascus morphology cannot be applied consistently to shape the classification of lichen-forming fungi. The increasing amount of missing data associated with the progressive addition of taxa resulted in some cases in the expected loss of support, but we also observed an improvement in statistical support for many internodes. We conclude that a phylogenetic synthesis for a chosen taxonomic group should include a comprehensive assessment of phylogenetic confidence based on multiple estimates using different methods and on a progressive taxon sampling with an increasing number of taxa, even if it involves an increasing amount of missing data.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Evolução Molecular , Filogenia , Análise por Conglomerados , Biologia Computacional , DNA Fúngico/genética , DNA Mitocondrial/genética , DNA Ribossômico/genética , RNA Polimerase II/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA