Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 9(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861762

RESUMO

Natural polyphenols are important dietary antioxidants that significantly benefit human health. Coffee and tea have been shown to largely contribute to the dietary intake of these antioxidants in several populations. More recently, the use of coffee leaves to produce tea has become a potential commercial target, therefore prompting studies on the quantification of polyphenols in coffee leaves. In this study a variety of coffee leaf species, at different development stages, were analyzed using ultra-high pressure liquid chromatography. The results demonstrate that both the botanical origin of the samples and their maturity influence significantly the concentration of the antioxidants; for total chlorogenic acids a two-fold difference was found between different species and up to a three-fold variation was observed between young and mature leaves. Furthermore, the range of concentrations of chlorogenic acids in young leaves (35.7-80.8 mg/g of dry matter) were found to be comparable to the one reported for green coffee beans. The results provide important data from which potential new commercial products can be developed.

2.
Front Plant Sci ; 6: 478, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26175744

RESUMO

A proteomic analysis of the apoplastic fluid (APF) of coffee leaves was conducted to investigate the cellular processes associated with incompatible (resistant) and compatible (susceptible) Coffea arabica-Hemileia vastatrix interactions, during the 24-96 hai period. The APF proteins were extracted by leaf vacuum infiltration and protein profiles were obtained by 2-DE. The comparative analysis of the gels revealed 210 polypeptide spots whose volume changed in abundance between samples (control, resistant and susceptible) during the 24-96 hai period. The proteins identified were involved mainly in protein degradation, cell wall metabolism and stress/defense responses, most of them being hydrolases (around 70%), particularly sugar hydrolases and peptidases/proteases. The changes in the APF proteome along the infection process revealed two distinct phases of defense responses, an initial/basal one (24-48 hai) and a late/specific one (72-96 hai). Compared to susceptibility, resistance was associated with a higher number of proteins, which was more evident in the late/specific phase. Proteins involved in the resistance response were mainly, glycohydrolases of the cell wall, serine proteases and pathogen related-like proteins (PR-proteins), suggesting that some of these proteins could be putative candidates for resistant markers of coffee to H. vastatrix. Antibodies were produced against chitinase, pectin methylesterase, serine carboxypeptidase, reticuline oxidase and subtilase and by an immunodetection assay it was observed an increase of these proteins in the resistant sample. With this methodology we have identified proteins that are candidate markers of resistance and that will be useful in coffee breeding programs to assist in the selection of cultivars with resistance to H. vastatrix.

3.
J Proteomics ; 104: 128-39, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24698662

RESUMO

This work describes the coffee leaf apoplastic proteome and its modulation by the greenhouse conditions. The apoplastic fluid (APF) was obtained by leaf vacuum infiltration, and the recovered proteins were separated by 2-DE and subsequently identified by matrix assisted laser desorption/ionization time of flight-mass spectrometry, followed by homology search in EST coffee databases. Prediction tools revealed that the majority of the 195 identified proteins are involved in cell wall metabolism and in stress/defense responses. Although most of the proteins follow the classical secretory mechanism, a low percentage of them seem to result from unconventional secretion (leaderless secreted proteins). Principal components analysis revealed that the APF samples formed two distinct groups, with the temperature amplitude mostly contributing for this separation (higher or lower than 10°C, respectively). Sixty one polypeptide spots allowed defining these two groups and 28 proteins were identified, belonging to carbohydrate metabolism, cell wall modification and proteolysis. Interestingly stress/defense proteins appeared as more abundant in Group I which is associated with a higher temperature amplitude. It seems that the proteins in the coffee leaf APF might be implicated in structural modifications in the extracellular space that are crucial for plant development/adaptation to the conditions of the prevailing environment. BIOLOGICAL SIGNIFICANCE: This is the first detailed proteomic study of the coffee leaf apoplastic fluid (APF) and of its modulation by the greenhouse conditions. The comprehensive overview of the most abundant proteins present in the extra-cellular compartment is particularly important for the understanding of coffee responses to abiotic/biotic stress. This article is part of a Special Issue entitled: Environmental and structural proteomics.


Assuntos
Coffea/metabolismo , Meio Ambiente , Efeito Estufa/estatística & dados numéricos , Modelos Biológicos , Componentes Aéreos da Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Simulação por Computador , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA