Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
JACS Au ; 4(1): 150-163, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38274250

RESUMO

Mucin-1 (MUC1) glycopeptides are exceptional candidates for potential cancer vaccines. However, their autoantigenic nature often results in a weak immune response. To overcome this drawback, we carefully engineered synthetic antigens with precise chemical modifications. To be effective and stimulate an anti-MUC1 response, artificial antigens must mimic the conformational dynamics of natural antigens in solution and have an equivalent or higher binding affinity to anti-MUC1 antibodies than their natural counterparts. As a proof of concept, we have developed a glycopeptide that contains noncanonical amino acid (2S,3R)-3-hydroxynorvaline. The unnatural antigen fulfills these two properties and effectively mimics the threonine-derived antigen. On the one hand, conformational analysis in water shows that this surrogate explores a landscape similar to that of the natural variant. On the other hand, the presence of an additional methylene group in the side chain of this analog compared to the threonine residue enhances a CH/π interaction in the antigen/antibody complex. Despite an enthalpy-entropy balance, this synthetic glycopeptide has a binding affinity slightly higher than that of its natural counterpart. When conjugated with gold nanoparticles, the vaccine candidate stimulates the formation of specific anti-MUC1 IgG antibodies in mice and shows efficacy comparable to that of the natural derivative. The antibodies also exhibit cross-reactivity to selectively target, for example, human breast cancer cells. This investigation relied on numerous analytical (e.g., NMR spectroscopy and X-ray crystallography) and biophysical techniques and molecular dynamics simulations to characterize the antigen-antibody interactions. This workflow streamlines the synthetic process, saves time, and reduces the need for extensive, animal-intensive immunization procedures. These advances underscore the promise of structure-based rational design in the advance of cancer vaccine development.

2.
Sci Rep ; 13(1): 21684, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066107

RESUMO

Glycosyltransferases (GTs) are enzymes that catalyze the formation of glycosidic bonds and hundreds of GTs have been identified so far in humans. Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) has been associated with central nervous system diseases and cancer. However, evidence on its enzymatic properties, including its substrates, has been scarcely described. In this paper, we have produced and purified recombinant secretory GLT8D1. The enzyme was found to be N-glycosylated. Differential scanning fluorimetry was employed to analyze the stabilization of GLT8D1 by Mn2+ and nucleotides, revealing UDP as the most stabilizing nucleotide scaffold. GLT8D1 displayed glycosyltransferase activity from UDP-galactose onto N-acetylgalactosamine but with a low efficiency. Modeling of the structure revealed similarities with other GT-A fold enzymes in CAZy family GT8 and glycosyltransferases in other families with galactosyl-, glucosyl-, and xylosyltransferase activities, each with retaining catalytic mechanisms. Our study provides novel structural and functional insights into the properties of GLT8D1 with implications in pathological processes.


Assuntos
Galactosiltransferases , Glicosiltransferases , Humanos , Galactosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Catálise , Difosfato de Uridina
3.
Cancers (Basel) ; 14(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139619

RESUMO

Predicting patient response to treatment and the onset of chemoresistance are still major challenges in oncology. Chemoresistance is deeply influenced by the complex cellular interactions occurring within the tumor microenvironment (TME), including metabolic crosstalk. We have previously shown that ex vivo tumor tissue cultures derived from ovarian carcinoma (OvC) resections retain the TME components for at least four weeks of culture and implemented assays for assessment of drug response. Here, we explored ex vivo patient-derived tumor tissue cultures to uncover metabolic signatures of chemosensitivity and/or resistance. Tissue cultures derived from nine OvC cases were challenged with carboplatin and paclitaxel, the standard-of-care chemotherapeutics, and the metabolic footprints were characterized by LC-MS. Partial least-squares discriminant analysis (PLS-DA) revealed metabolic signatures that discriminated high-responder from low-responder tissue cultures to ex vivo drug exposure. As a proof-of-concept, a set of potential metabolic biomarkers of drug response was identified based on the receiver operating characteristics (ROC) curve, comprising amino acids, fatty acids, pyrimidine, glutathione, and TCA cycle pathways. Overall, this work establishes an analytical and computational platform to explore metabolic features of the TME associated with response to treatment, which can leverage the discovery of biomarkers of drug response and resistance in OvC.

4.
Nat Chem ; 14(7): 754-765, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35764792

RESUMO

Natural products that contain ortho-quinones show great potential as anticancer agents but have been largely discarded from clinical development because their redox-cycling behaviour results in general systemic toxicity. Here we report conjugation of ortho-quinones to a carrier, which simultaneously masks their underlying redox activity. C-benzylation at a quinone carbonyl forms a redox-inactive benzyl ketol. Upon a specific enzymatic trigger, an acid-promoted, self-immolative C-C bond-cleaving 1,6-elimination mechanism releases the redox-active hydroquinone inside cells. By using a 5-lipoxygenase modulator, ß-lapachone, we created cathepsin-B-cleavable quinone prodrugs. We applied the strategy for intracellular release of ß-lapachone upon antibody-mediated delivery. Conjugation of protected ß-lapachone to Gem-IgG1 antibodies, which contain the variable region of gemtuzumab, results in homogeneous, systemically non-toxic and conditionally stable CD33+-specific antibody-drug conjugates with in vivo efficacy against a xenograft murine model of acute myeloid leukaemia. This protection strategy could allow the use of previously overlooked natural products as anticancer agents, thus extending the range of drugs available for next-generation targeted therapeutics.


Assuntos
Antineoplásicos , Produtos Biológicos , Pró-Fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Camundongos , Oxirredução , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Quinonas
5.
Anticancer Res ; 42(6): 3217-3230, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35641277

RESUMO

BACKGROUND: Eight human catalytic phosphoinositide 3-kinase (PI3K) isoforms exist which are subdivided into three classes. While class I isoforms have been well-studied in cancer, little is known about the functions of class II PI3Ks. MATERIALS AND METHODS: The expression pattern and functions of the class II PI3KC2ß isoform were investigated in a panel of tumour samples and cell lines. RESULTS: Overexpression of PI3KC2ß was found in subsets of tumours and cell lines from acute myeloid leukemia (AML), glioblastoma multiforme (GBM), medulloblastoma (MB), neuroblastoma (NB), and small cell lung cancer (SCLC). Specific pharmacological inhibitors of PI3KC2ß or RNA interference impaired proliferation of a panel of human cancer cell lines and primary cultures. Inhibition of PI3KC2ß also induced apoptosis and sensitised the cancer cells to chemotherapeutic agents. CONCLUSION: Together, these data show that PI3KC2ß contributes to proliferation and survival in AML, brain tumours and neuroendocrine tumours, and may represent a novel target in these malignancies.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Leucemia Mieloide Aguda , Tumores Neuroendócrinos , Doença Aguda , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Neoplasias Pulmonares , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Fosfatidilinositol 3-Quinases/metabolismo
6.
Org Lett ; 23(21): 8580-8584, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34694118

RESUMO

A self-immolative bioorthogonal conditionally cleavable linker based on Grob fragmentation is described. It is derived from 1,3-aminocyclohexanols and allows the release of sulfonate-containing compounds in aqueous media. Modulation of the amine pKa promotes fragmentation even at slightly acidic pH, a common feature of several tumor environments. The Grob fragmentation can also occur under physiological conditions in living cells, highlighting the potential bioorthogonal applicability of this reaction.

7.
ACS Cent Sci ; 7(5): 868-881, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34079902

RESUMO

The use of computational tools to identify biological targets of natural products with anticancer properties and unknown modes of action is gaining momentum. We employed self-organizing maps to deconvolute the phenotypic effects of piperlongumine (PL) and establish a link to modulation of the human transient receptor potential vanilloid 2 (hTRPV2) channel. The structure of the PL-bound full-length rat TRPV2 channel was determined by cryo-EM. PL binds to a transient allosteric pocket responsible for a new mode of anticancer activity against glioblastoma (GBM) in which hTRPV2 is overexpressed. Calcium imaging experiments revealed the importance of Arg539 and Thr522 residues on the antagonistic effect of PL and calcium influx modulation of the TRPV2 channel. Downregulation of hTRPV2 reduces sensitivity to PL and decreases ROS production. Analysis of GBM patient samples associates hTRPV2 overexpression with tumor grade, disease progression, and poor prognosis. Extensive tumor abrogation and long term survival was achieved in two murine models of orthotopic GBM by formulating PL in an implantable scaffold/hydrogel for sustained local therapy. Furthermore, in primary tumor samples derived from GBM patients, we observed a selective reduction of malignant cells in response to PL ex vivo. Our results establish a broadly applicable strategy, leveraging data-motivated research hypotheses for the discovery of novel means tackling cancer.

8.
Bioorg Med Chem ; 28(22): 115783, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007561

RESUMO

Methods that allow for chemical site-selective dual protein modification are scarce. Here, we provide proof-of-concept for the orthogonality and compatibility of a method for regioselective lysine modification with strategies for protein modification at cysteine and genetically encoded ketone-tagged amino acids. This sequential, orthogonal approach was applied to albumin and a therapeutic antibody to create functional dual site-selectively labelled proteins.


Assuntos
Albuminas/metabolismo , Anticorpos/metabolismo , Lisina/metabolismo , Albuminas/química , Anticorpos/química , Lisina/química , Estrutura Molecular , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo
9.
Angew Chem Int Ed Engl ; 59(37): 16023-16032, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32558207

RESUMO

The bioorthogonal inverse-electron-demand Diels-Alder (IEDDA) cleavage reaction between tetrazine and trans-cyclooctene (TCO) is a powerful way to control the release of bioactive agents and imaging probes. In this study, a pretargeted activation strategy using single-walled carbon nanotubes (SWCNTs) that bear tetrazines (TZ@SWCNTs) and a TCO-caged molecule was used to deliver active effector molecules. To optimize a turn-on signal by using in vivo fluorescence imaging, we developed a new fluorogenic near-infrared probe that can be activated by bioorthogonal chemistry and image tumours in mice by caging hemicyanine with TCO (tHCA). With our pretargeting strategy, we have shown selective doxorubicin prodrug activation and instantaneous fluorescence imaging in living cells. By combining a tHCA probe and a pretargeted bioorthogonal approach, real-time, non-invasive tumour visualization with a high target-to-background ratio was achieved in a xenograft mice tumour model. The combined advantages of enhanced stability, kinetics and biocompatibility, and the superior pharmacokinetics of tetrazine-functionalised SWCNTs could allow application of targeted bioorthogonal decaging approaches with minimal off-site activation of fluorophore/drug.


Assuntos
Diagnóstico por Imagem/métodos , Nanotubos de Carbono/química , Animais , Reação de Cicloadição , Humanos , Raios Infravermelhos , Células MCF-7 , Camundongos
10.
Acta Ortop Bras ; 28(1): 16-18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095106

RESUMO

OBJECTIVE: To conduct an epidemiological study on brachial plexus injuries, through data collection of patients treated in the Hospital São Paulo, which is the referral center for high complexity in this region. METHODS: We conducted a retrospective study with a review of the electronic medical records of the Hospital, from August 2008 to June 2013. RESULTS: We estimated an 1.88/100,000 annual incidence, considering that the Hospital is the only referral center for brachial plexus injuries. The mean time between injury and the first visit to the reference hospital was 8.25 months. The mean time interval between injury and surgery was 11.25 months. The percentage of total injuries was 33%, while the upper and middle trunk injuries were 33% and 28%, respectively. CONCLUSION: We observed many aspects in common with those reported by other centers of excellence in Brazil such as: sex, age and mechanism of injury. However, some findings were different from most other epidemiological studies, namely: level of injury, time between the accident and the first appointment and the time between injury and surgery. Level of evidence IV, case series.


OBJETIVO: Realizar um estudo epidemiológico das lesões do plexo braquial através do levantamento de dados dos pacientes atendidos no Hospital de referência para alta complexidade da região metropolitana de São Paulo. MÉTODOS: Estudo retrospectivo com avaliação dos prontuários eletrônicos do HMC-SA, de agosto de 2008 até junho de 2013. RESULTADOS: Levando-se em consideração que o Hospital é o único centro de referência para lesões do plexo braquial, chegamos a uma incidência anual estimada em 1,88/100.000 habitantes. A média de tempo entre a lesão e a primeira consulta no hospital foi de 8,25 meses. O intervalo de tempo entre a lesão e a cirurgia foi em média de 11,25 meses. A porcentagem de lesões totais foi de 33%, enquanto as lesões de tronco superior e tronco superior e médio foram de 33% e 28%, respectivamente. CONCLUSÃO: Observamos muitos aspectos em comum com os relatados por outros centros de referência no Brasil, tais como: gênero, idade e mecanismo de trauma. No entanto, alguns achados foram diferentes da maioria dos outros estudos epidemiológicos: nível de lesão, tempo decorrido entre o acidente e o primeiro atendimento e o intervalo de tempo entre a lesão e o tratamento cirúrgico. Nível de evidência IV, série de casos.

11.
Acta ortop. bras ; 28(1): 16-18, Jan.-Feb. 2020. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1054759

RESUMO

ABSTRACT Objective: To conduct an epidemiological study on brachial plexus injuries, through data collection of patients treated in the Hospital São Paulo, which is the referral center for high complexity in this region. Methods: We conducted a retrospective study with a review of the electronic medical records of the Hospital, from August 2008 to June 2013. Results: We estimated an 1.88/100,000 annual incidence, considering that the Hospital is the only referral center for brachial plexus injuries. The mean time between injury and the first visit to the reference hospital was 8.25 months. The mean time interval between injury and surgery was 11.25 months. The percentage of total injuries was 33%, while the upper and middle trunk injuries were 33% and 28%, respectively. Conclusion: We observed many aspects in common with those reported by other centers of excellence in Brazil such as: sex, age and mechanism of injury. However, some findings were different from most other epidemiological studies, namely: level of injury, time between the accident and the first appointment and the time between injury and surgery. Level of evidence IV, case series.


RESUMO Objetivo: Realizar um estudo epidemiológico das lesões do plexo braquial através do levantamento de dados dos pacientes atendidos no Hospital de referência para alta complexidade da região metropolitana de São Paulo. Métodos: Estudo retrospectivo com avaliação dos prontuários eletrônicos do HMC-SA, de agosto de 2008 até junho de 2013. Resultados: Levando-se em consideração que o Hospital é o único centro de referência para lesões do plexo braquial, chegamos a uma incidência anual estimada em 1,88/100.000 habitantes. A média de tempo entre a lesão e a primeira consulta no hospital foi de 8,25 meses. O intervalo de tempo entre a lesão e a cirurgia foi em média de 11,25 meses. A porcentagem de lesões totais foi de 33%, enquanto as lesões de tronco superior e tronco superior e médio foram de 33% e 28%, respectivamente. Conclusão: Observamos muitos aspectos em comum com os relatados por outros centros de referência no Brasil, tais como: gênero, idade e mecanismo de trauma. No entanto, alguns achados foram diferentes da maioria dos outros estudos epidemiológicos: nível de lesão, tempo decorrido entre o acidente e o primeiro atendimento e o intervalo de tempo entre a lesão e o tratamento cirúrgico. Nível de evidência IV, série de casos.

12.
Chem Sci ; 11(15): 3996-4006, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-34122869

RESUMO

The Tn antigen (GalNAc-α-1-O-Thr/Ser) is a well-known tumor-associated carbohydrate determinant. The use of glycopeptides that incorporate this structure has become a significant and promising niche of research owing to their potential use as anticancer vaccines. Herein, the conformational preferences of a glycopeptide with an unnatural Tn antigen, characterized by a threonine decorated with an sp2-iminosugar-type α-GalNAc mimic, have been studied both in solution, by combining NMR spectroscopy and molecular dynamics simulations, and in the solid state bound to an anti-mucin-1 (MUC1) antibody, by X-ray crystallography. The Tn surrogate can mimic the main conformer sampled by the natural antigen in solution and exhibits high affinity towards anti-MUC1 antibodies. Encouraged by these data, a cancer vaccine candidate based on this unnatural glycopeptide and conjugated to the carrier protein Keyhole Limpet Hemocyanin (KLH) has been prepared and tested in mice. Significantly, the experiments in vivo have proved that this vaccine elicits higher levels of specific anti-MUC1 IgG antibodies than the analog that bears the natural Tn antigen and that the elicited antibodies recognize human breast cancer cells with high selectivity. Altogether, we compile evidence to confirm that the presentation of the antigen, both in solution and in the bound state, plays a critical role in the efficacy of the designed cancer vaccines. Moreover, the outcomes derived from this vaccine prove that there is room for exploring further adjustments at the carbohydrate level that could contribute to designing more efficient cancer vaccines.

13.
RSC Chem Biol ; 1(4): 251-262, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458764

RESUMO

The bone marrow tyrosine kinase in chromosome X (BMX) is pursued as a drug target because of its role in various pathophysiological processes. We designed BMX covalent inhibitors with single-digit nanomolar potency with unexploited topological pharmacophore patterns. Importantly, we reveal the first X-ray crystal structure of covalently inhibited BMX at Cys496, which displays key interactions with Lys445, responsible for hampering ATP catalysis and the DFG-out-like motif, typical of an inactive conformation. Molecular dynamic simulations also showed this interaction for two ligand/BMX complexes. Kinome selectivity profiling showed that the most potent compound is the strongest binder, displays intracellular target engagement in BMX-transfected cells with two-digit nanomolar inhibitory potency, and leads to BMX degradation PC3 in cells. The new inhibitors displayed anti-proliferative effects in androgen-receptor positive prostate cancer cells that where further increased when combined with known inhibitors of related signaling pathways, such as PI3K, AKT and Androgen Receptor. We expect these findings to guide development of new selective BMX therapeutic approaches.

14.
Org Biomol Chem ; 17(22): 5633-5638, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31120093

RESUMO

Small synthetic molecules capable of inducing transmembrane anion transport have received a lot of attention as potential anti-cancer agents due to their ability to interfere with intracellular pH homeostasis. A series of triaminopyrimidine-based anion transporters have been synthesised, and they are found to diminish proton gradients across lipid bilayers at physiologically relevant pH. The compounds have pKa values (≈7.2) that allow protonation/deprotonation processes coupled with anion binding/unbinding events in physiologically relevant conditions. Synthetic vesicle transport experiments as well as solid state structures indicate synergistic binding of HCl. Cell assays show that the transporters induce apoptosis in various cancerous cell lines.


Assuntos
Antineoplásicos/farmacologia , Ácido Clorídrico/metabolismo , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Transporte Biológico/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Ácido Clorídrico/química , Transporte de Íons/efeitos dos fármacos , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química
15.
Angew Chem Int Ed Engl ; 58(20): 6640-6644, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30897271

RESUMO

Quaternized vinyl- and alkynyl-pyridine reagents were shown to react in an ultrafast and selective manner with several cysteine-tagged proteins at near-stoichiometric quantities. We have demonstrated that this method can effectively create a homogenous antibody-drug conjugate that features a precise drug-to-antibody ratio of 2, which was stable in human plasma and retained its specificity towards Her2+ cells. Finally, the developed warhead introduces a +1 charge to the overall net charge of the protein, which enabled us to show that the electrophoretic mobility of the protein may be tuned through the simple attachment of a quaternized vinyl pyridinium reagent at the cysteine residues. We anticipate the generalized use of quaternized vinyl- and alkynyl-pyridine reagents not only for bioconjugation, but also as warheads for covalent inhibition and as tools to profile cysteine reactivity.

16.
Int J Cancer ; 145(7): 1874-1888, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30843188

RESUMO

Progression to hormone-independent growth leading to endocrine therapy resistance occurs in a high proportion of patients with estrogen receptor alpha (ERα) and progesterone receptors (PR) positive breast cancer. We and others have previously shown that estrogen- and progestin-induced tumor growth requires ERα and PR interaction at their target genes. Here, we show that fibroblast growth factor 2 (FGF2)-induces cell proliferation and tumor growth through hormone-independent ERα and PR activation and their interaction at the MYC enhancer and proximal promoter. MYC inhibitors, antiestrogens or antiprogestins reverted FGF2-induced effects. LC-MS/MS identified 700 canonical proteins recruited to MYC regulatory sequences after FGF2 stimulation, 397 of which required active ERα (ERα-dependent). We identified ERα-dependent proteins regulating transcription that, after FGF2 treatment, were recruited to the enhancer as well as proteins involved in transcription initiation that were recruited to the proximal promoter. Also, among the ERα-dependent and independent proteins detected at both sites, PR isoforms A and B as well as the novel protein product PRBΔ4 were found. PRBΔ4 lacks the hormone-binding domain and was able to induce reporter gene expression from estrogen-regulated elements and to increase cell proliferation when cells were stimulated with FGF2 but not by progestins. Analysis of the Cancer Genome Atlas data set revealed that PRBΔ4 expression is associated with worse overall survival in luminal breast cancer patients. This discovery provides a new mechanism by which growth factor signaling can engage nonclassical hormone receptor isoforms such as PRBΔ4, which interacts with growth-factor activated ERα and PR to stimulate MYC gene expression and hence progression to endocrine resistance.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Receptores de Progesterona/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Elementos Facilitadores Genéticos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Prognóstico , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Progesterona/genética , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Am Chem Soc ; 141(9): 4063-4072, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30726084

RESUMO

GalNAc-glycopeptides derived from mucin MUC1 are an important class of tumor-associated antigens. α- O-glycosylation forces the peptide to adopt an extended conformation in solution, which is far from the structure observed in complexes with a model anti-MUC1 antibody. Herein, we propose a new strategy for designing potent antigen mimics based on modulating peptide/carbohydrate interactions by means of O → S/Se replacement at the glycosidic linkage. These minimal chemical modifications bring about two key structural changes to the glycopeptide. They increase the carbohydrate-peptide distance and change the orientation and dynamics of the glycosidic linkage. As a result, the peptide acquires a preorganized and optimal structure suited for antibody binding. Accordingly, these new glycopeptides display improved binding toward a representative anti-MUC1 antibody relative to the native antigens. To prove the potential of these glycopeptides as tumor-associated MUC1 antigen mimics, the derivative bearing the S-glycosidic linkage was conjugated to gold nanoparticles and tested as an immunogenic formulation in mice without any adjuvant, which resulted in a significant humoral immune response. Importantly, the mice antisera recognize cancer cells in biopsies of breast cancer patients with high selectivity. This finding demonstrates that the antibodies elicited against the mimetic antigen indeed recognize the naturally occurring antigen in its physiological context. Clinically, the exploitation of tumor-associated antigen mimics may contribute to the development of cancer vaccines and to the improvement of cancer diagnosis based on anti-MUC1 antibodies. The methodology presented here is of general interest for applications because it may be extended to modulate the affinity of biologically relevant glycopeptides toward their receptors.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Neoplasias/imunologia , Neoplasias da Mama/microbiologia , Carboidratos/imunologia , Glicopeptídeos/imunologia , Oxigênio/imunologia , Animais , Anticorpos Monoclonais/química , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carboidratos/química , Desenho de Fármacos , Feminino , Glicopeptídeos/química , Glicosídeos/química , Glicosídeos/imunologia , Glicosilação , Humanos , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Oxigênio/química , Selênio/química , Selênio/imunologia , Enxofre/química , Enxofre/imunologia
18.
Nat Protoc ; 14(1): 86-99, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30470819

RESUMO

There is considerable interest in the development of chemical methods for the precise, site-selective modification of antibodies for therapeutic applications. In this protocol, we describe a strategy for the irreversible and selective modification of cysteine residues on antibodies, using functionalized carbonylacrylic reagents. This protocol is based on a thiol-Michael-type addition of native or engineered cysteine residues to carbonylacrylic reagents equipped with functional compounds such as cytotoxic drugs. This approach is a robust alternative to the conventional maleimide technique; the reaction is irreversible and uses synthetically accessible reagents. Complete conversion to the conjugates, with improved quality and homogeneity, is often achieved using a minimal excess (typically between 5 and 10 equiv.) of the carbonylacrylic reagent. Potential applications of this method cover a broad scope of cysteine-tagged antibodies in various formats (full-length IgGs, nanobodies) for the site-selective incorporation of cytotoxic drugs without loss of antigen-binding affinity. Both the synthesis of the carbonylacrylic reagent armed with a synthetic molecule of interest and the subsequent preparation of the chemically defined, homogeneous antibody conjugate can be achieved within 48 h and can be easily performed by nonspecialists. Importantly, the conjugates formed are stable in human plasma. The use of liquid chromatography-mass spectrometry (LC-MS) analysis is recommended for monitoring the progression of the bioconjugation reactions on protein and antibody substrates with accurate resolution.


Assuntos
Acrilatos/química , Métodos Analíticos de Preparação de Amostras , Cisteína/química , Imunoconjugados/química , Imunoglobulinas/química , Anticorpos de Domínio Único/química , Cromatografia Líquida , Reagentes de Ligações Cruzadas/química , Humanos , Imunoconjugados/isolamento & purificação , Imunoglobulinas/isolamento & purificação , Maleimidas/química , Anticorpos de Domínio Único/isolamento & purificação , Espectrometria de Massas em Tandem
19.
J Am Chem Soc ; 140(11): 4004-4017, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29473744

RESUMO

Site-selective chemical conjugation of synthetic molecules to proteins expands their functional and therapeutic capacity. Current protein modification methods, based on synthetic and biochemical technologies, can achieve site selectivity, but these techniques often require extensive sequence engineering or are restricted to the N- or C-terminus. Here we show the computer-assisted design of sulfonyl acrylate reagents for the modification of a single lysine residue on native protein sequences. This feature of the designed sulfonyl acrylates, together with the innate and subtle reactivity differences conferred by the unique local microenvironment surrounding each lysine, contribute to the observed regioselectivity of the reaction. Moreover, this site selectivity was predicted computationally, where the lysine with the lowest p Ka was the kinetically favored residue at slightly basic pH. Chemoselectivity was also observed as the reagent reacted preferentially at lysine, even in those cases when other nucleophilic residues such as cysteine were present. The reaction is fast and proceeds using a single molar equivalent of the sulfonyl acrylate reagent under biocompatible conditions (37 °C, pH 8.0). This technology was demonstrated by the quantitative and irreversible modification of five different proteins including the clinically used therapeutic antibody Trastuzumab without prior sequence engineering. Importantly, their native secondary structure and functionality is retained after the modification. This regioselective lysine modification method allows for further bioconjugation through aza-Michael addition to the acrylate electrophile that is generated by spontaneous elimination of methanesulfinic acid upon lysine labeling. We showed that a protein-antibody conjugate bearing a site-specifically installed fluorophore at lysine could be used for selective imaging of apoptotic cells and detection of Her2+ cells, respectively. This simple, robust method does not require genetic engineering and may be generally used for accessing diverse, well-defined protein conjugates for basic biology and therapeutic studies.


Assuntos
Desenho Assistido por Computador , Lisina/química , Proteínas/química , Acrilatos/síntese química , Acrilatos/química , Células Hep G2 , Humanos , Estrutura Molecular , Estereoisomerismo
20.
J Am Chem Soc ; 139(50): 18365-18375, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29206031

RESUMO

Chemical modification of proteins is essential for a variety of important diagnostic and therapeutic applications. Many strategies developed to date lack chemo- and regioselectivity as well as result in non-native linkages that may suffer from instability in vivo and adversely affect the protein's structure and function. We describe here the reaction of N-nucleophiles with the amino acid dehydroalanine (Dha) in a protein context. When Dha is chemically installed in proteins, the addition of a wide-range N-nucleophiles enables the rapid formation of amine linkages (secondary and tertiary) in a chemoselective manner under mild, biocompatible conditions. These new linkages are stable at a wide range of pH values (pH 2.8 to 12.8), under reducing conditions (biological thiols such as glutathione) and in human plasma. This method is demonstrated for three proteins and is shown to be fully compatible with disulfide bridges, as evidenced by the selective modification of recombinant albumin that displays 17 structurally relevant disulfides. The practicability and utility of our approach is further demonstrated by the construction of a chemically modified C2A domain of Synaptotagmin-I protein that retains its ability to preferentially bind to apoptotic cells at a level comparable to the native protein. Importantly, the method was useful for building a homogeneous antibody-drug conjugate with a precise drug-to-antibody ratio of 2. The kinase inhibitor crizotinib was directly conjugated to Dha through its piperidine motif, and its antibody-mediated intracellular delivery results in 10-fold improvement of its cancer cell-killing efficacy. The simplicity and exquisite site-selectivity of the aza-Michael ligation described herein allows the construction of stable secondary and tertiary amine-linked protein conjugates without affecting the structure and function of biologically relevant proteins.


Assuntos
Alanina/análogos & derivados , Albuminas/química , Aminas/química , Anexina A5/química , Sinaptotagmina I/química , Alanina/química , Animais , Anticorpos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Crizotinibe , Dissulfetos/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Cinética , Camundongos , Modelos Moleculares , Estrutura Molecular , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA