Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607918

RESUMO

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


Assuntos
Região CA1 Hipocampal , Interneurônios , Reconhecimento Psicológico , Peptídeo Intestinal Vasoativo , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/citologia , Camundongos , Masculino , Reconhecimento Psicológico/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Camundongos Endogâmicos C57BL , Memória/fisiologia , Parvalbuminas/metabolismo , Comportamento Exploratório/fisiologia , Somatostatina/metabolismo
2.
Front Neural Circuits ; 14: 32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581726

RESUMO

In the brain, there is a vast diversity of different structures, circuitries, cell types, and cellular genetic expression profiles. While this large diversity can often occlude a clear understanding of how the brain works, careful analyses of analogous studies performed across different brain areas can hint at commonalities in neuronal organization. This in turn can yield a fundamental understanding of necessary circuitry components that are crucial for how information is processed across the brain. In this review, we outline recent in vivo and in vitro studies that have been performed in different cortical areas to characterize the vasoactive intestinal polypeptide (VIP)- and/or calretinin (CR)-expressing cells that specialize in inhibiting GABAergic interneurons. In doing so, we make the case that, across cortical structures, interneuron-specific cells commonly specialize in the synaptic disinhibition of excitatory neurons, which can ungate the integration and plasticity of external inputs onto excitatory neurons. In line with this, activation of interneuron- specific cells enhances animal performance across a variety of behavioral tasks that involve learning, memory formation, and sensory discrimination, and may represent a key target for therapeutic interventions under different pathological conditions. As such, interneuron-specific cells across different cortical structures are an essential network component for information processing and normal brain function.


Assuntos
Calbindina 2/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Rede Nervosa/metabolismo , Inibição Neural/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Córtex Cerebral/citologia , Hipocampo/citologia , Humanos , Rede Nervosa/citologia
3.
Cereb Cortex ; 30(6): 3667-3685, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32080739

RESUMO

Disinhibition is a widespread circuit mechanism for information selection and transfer. In the hippocampus, disinhibition of principal cells is provided by the interneuron-specific interneurons that express the vasoactive intestinal polypeptide (VIP-IS) and innervate selectively inhibitory interneurons. By combining optophysiological experiments with computational models, we determined the impact of synaptic inputs onto the network state-dependent recruitment of VIP-IS cells. We found that VIP-IS cells fire spikes in response to both the Schaffer collateral and the temporoammonic pathway activation. Moreover, by integrating their intrinsic and synaptic properties into computational models, we predicted recruitment of these cells between the rising phase and peak of theta oscillation and during ripples. Two-photon Ca2+-imaging in awake mice supported in part the theoretical predictions, revealing a significant speed modulation of VIP-IS cells and their preferential albeit delayed recruitment during theta-run epochs, with estimated firing at the rising phase and peak of the theta cycle. However, it also uncovered that VIP-IS cells are not activated during ripples. Thus, given the preferential theta-modulated firing of VIP-IS cells in awake hippocampus, we postulate that these cells may be important for information gating during spatial navigation and memory encoding.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/metabolismo , Interneurônios/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Simulação por Computador , Interneurônios/fisiologia , Memória , Camundongos , Camundongos Transgênicos , Inibição Neural/fisiologia , Imagem Óptica , Técnicas de Patch-Clamp , Recrutamento Neurofisiológico/fisiologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Ritmo Teta , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA