Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Semin Intervent Radiol ; 41(3): 241-245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39165654

RESUMO

This review explores the applications of contrast-enhanced ultrasound (CEUS) in interventional radiology, focusing on its role in endoleak detection after endovascular abdominal aortic aneurysm repair (EVAR), periprocedural thermal ablation guidance, and transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC). CEUS offers a dynamic assessment for the detection of endoleak following EVAR, facilitating accurate diagnosis and classification. In periprocedural thermal ablation, CEUS enhances target lesion delineation with the visualization of real-time perfusion changes, optimizing treatment strategies and reducing residual tumor rates. Finally, CEUS has demonstrated efficacy in intraprocedural evaluation and postprocedural follow-up in TACE for HCC, offering early detection of residual tumor enhancement and providing an alternative for patients with contraindications to contrast-enhanced computed tomography or magnetic resonance imaging. Overall, CEUS is a versatile and valuable tool with many applications to offer interventional radiologists enhanced diagnostic capabilities and improved patient management.

2.
J Vasc Interv Radiol ; 31(6): 961-966, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376176

RESUMO

PURPOSE: To evaluate utilization trends in percutaneous embolization among radiologists and nonradiologist providers. MATERIALS AND METHODS: The nationwide Medicare Part B fee-for-service databases for 2005-2016 were used to evaluate percutaneous embolization codes. Six codes describing embolization procedures were reviewed. Physician providers were grouped as radiologists, vascular surgeons, cardiologists, nephrologists, other surgeons, and all others. RESULTS: The total volume of Medicare percutaneous embolization procedures increased from 20,262 in 2005 to 45,478 in 2016 (+125%). Radiologists performed 13,872 procedures in 2005 (68% of total volume) and 33,254 in 2016 (73% of total volume), a 140% increase in volume. While other specialists also increased the number of cases performed from 2005 to 2016, radiologists strongly predominated, performing 87% of arterial and 30% of venous procedures in 2016, more than any other single specialty. In 2014 and 2015, a sharp increase in venous embolization cases performed by nonradiologists preceded a sharp decrease in 2016, likely the result of complicated billing codes for venous procedures. Radiologists maintained a steady upward trend in the number of cases they performed during those years. CONCLUSIONS: The volume of percutaneous embolization procedures performed in the Medicare population increased from 2005 to 2016, reflecting a trend toward minimally invasive intervention. In 2016, radiologists performed nearly 10 times more arterial embolization procedures than the second highest specialty and more venous embolization procedures than any other single specialty.


Assuntos
Embolização Terapêutica/tendências , Neoplasias/terapia , Padrões de Prática Médica/tendências , Radiologistas/tendências , Especialização/tendências , Idoso , Idoso de 80 Anos ou mais , Cardiologistas/tendências , Bases de Dados Factuais , Feminino , Humanos , Masculino , Medicare Part B/tendências , Nefrologistas/tendências , Cirurgiões/tendências , Fatores de Tempo , Estados Unidos
3.
Sci Rep ; 10(1): 2178, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034261

RESUMO

The prognosis of Glioblastoma Multiforme patients is poor despite aggressive therapy. Reasons include poor chemotherapy penetration across the blood-brain barrier and tumor infiltration into surrounding tissues. Here we studied the effects of combined point-source electroporation (EP) and systemic chemotherapy in glioma-bearing rats. 128 rats were studied. Treatment groups were administered systemic Cisplatin/Methotrexate before EP (either 90 or 180 pulses). Control groups were treated by EP, chemotherapy, or no treatment. Tumor volumes were determined by MRI. Tumors growth rates of the EP + Methotrexate group (1.02 ± 0.77) were significantly lower (p < 0.01) than the control (5.2 ± 1.0) 1-week post treatment. No significant difference was found compared to Methotrexate (1.7 ± 0.5). Objective response rates (ORR) were 40% and 57% for the Methotrexate and EP + Methotrexate groups respectively. Tumor growth rates and ORR of the EP + Cisplatin groups (90 pulses 0.98 ± 0.2, 57%, 180 pulses 1.2 ± 0.1, 33%) were significantly smaller than the control (6.4 ± 1.0, p < 0.01, p < 0.02, 0%) and Cisplatin (3.9 ± 1.0, p < 0.04, p < 0.05, 13%) groups. No significant differences were found between the control groups. Increased survival was found in the EP + Cisplatin group, Χ2 = 7.54, p < 0.006 (Log Rank). Point-source EP with systemic chemotherapy is a rapid, minimal-invasive treatment that was found to induce significant antineoplastic effects in a rat glioma model.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Eletroporação/métodos , Glioma/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Eletroporação/instrumentação , Masculino , Metotrexato/administração & dosagem , Metotrexato/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Endogâmicos Lew
4.
AJR Am J Roentgenol ; 214(5): 962-966, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32097027

RESUMO

OBJECTIVE. Although radiologists developed endovascular treatment of peripheral arterial disease (PAD) in the 1960s, vascular surgeons and cardiologists have become increasingly involved in its application. The purpose of this study was to examine utilization trends in endovascular and surgical treatment of PAD in recent years in the Medicare population. CONCLUSION. Surgical treatment of PAD has decreased each year from 2011 to 2016, whereas endovascular treatment has increased each year. By 2016, Medicare patients who needed revascularization for PAD were more than four times as likely to undergo endovascular as they were to undergo surgical treatment. Between 2011 and 2016, radiologists, vascular surgeons, and cardiologists all increased their endovascular volume, but by 2016, vascular surgeons and cardiologists performed three of every four endovascular procedures for the Medicare population. While only 12% of the total endovascular procedures for PAD were performed in 2016, radiology has grown its procedural volume each year from 2011 through 2016.


Assuntos
Procedimentos Endovasculares/tendências , Medicare , Doença Arterial Periférica/cirurgia , Padrões de Prática Médica/estatística & dados numéricos , Procedimentos Cirúrgicos Vasculares/tendências , Idoso , Planos de Pagamento por Serviço Prestado , Feminino , Humanos , Masculino , Estados Unidos
5.
Drug Deliv ; 26(1): 459-469, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30957567

RESUMO

The blood-brain barrier (BBB) is limiting transcellular and paracellular movement of molecules and cells, controls molecular traffic, and keeps out toxins. However, this protective function is the major hurdle for treating brain diseases such as brain tumors, Parkinson's disease, Alzheimer's disease, etc. It was previously demonstrated that high pulsed electrical fields (PEFs) can disrupt the BBB by inducing electroporation (EP) which increases the permeability of the transcellular route. Our goal was to study the effects of low PEFs, well below the threshold of EP on the integrity and function of the BBB. Ten low voltage pulses (5-100 V) were applied to a human in vitro BBB model. Changes in permeability to small molecules (NaF) were studied as well as changes in impedance spectrum and trans-endothelial electric resistivity. Viability and EP were evaluated by Presto-Blue and endogenous Lactate dehydrogenase release assays. The effect on tight junction and adherent junction protein was also studied. The results of low voltage experiments were compared to high voltage experiments (200-1400 V). A significant increase in permeability was found at voltages as low as 10 V despite EP only occurring from 100 V. The changes in permeability as a function of applied voltage were fitted to an inverse-exponential function, suggesting a plateau effect. Staining of VE-cadherin showed specific changes in protein expression. The results indicate that low PEFs can transiently disrupt the BBB by affecting the paracellular route, although the mechanism remains unclear.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Eletroporação/métodos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Modelos Biológicos , Pericitos/metabolismo , Animais , Bovinos , Células Cultivadas , Técnicas de Cocultura , Impedância Elétrica , Humanos
6.
J Nanobiotechnology ; 17(1): 3, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30630490

RESUMO

BACKGROUND: Retinal degeneration diseases affect millions of patients worldwide and lead to incurable vision loss. These diseases are caused by pathologies in the retina and underlying choroid, located in the back of the eye. One of the major challenges in the development of treatments for these blinding diseases is the safe and efficient delivery of therapeutics into the back of the eye. Previous studies demonstrated that narrow size distribution core-shell near infra-red fluorescent iron oxide (IO) nanoparticles (NPs) coated with human serum albumin (HSA, IO/HSA NPs) increase the half-life of conjugated therapeutic factors, suggesting they may be used for sustained release of therapeutics. In the present study, the in vivo tracking by MRI and the long term safety of IO/HSA NPs delivery into the suprachoroid of a rat model of retinal degeneration were assessed. RESULTS: Twenty-five Royal College of Surgeons (RCS) pigmented rats received suprachoroidal injection of 20-nm IO/HSA NPs into the right eye. The left eye was not injected and used as control. Animals were examined by magnetic resonance imaging (MRI), electroretinogram (ERG) and histology up to 30 weeks following injection. IO/HSA NPs were detected in the back part of the rats' eyes up to 30 weeks following injection by MRI, and up to 6 weeks by histology. No significant differences in retinal structure and function were observed between injected and non-injected eyes. There was no significant difference in the weight of IO/HSA NP-injected animals compared to non-injected rats. CONCLUSIONS: MRI could track the nanoparticles in the posterior segment of the injected eyes demonstrating their long-term persistence, and highlighting the possible use of MRI for translational studies in animals and in future clinical studies. Suprachoroidal injection of IO/HSA NPs showed no sign of adverse effects on retinal structure and function in a rat model of retinal degeneration, suggesting that suprachoroidal delivery of IO/HSA NPs is safe and that these NPs may be used in future translational and clinical studies for extended release drug delivery at the back of the eye.


Assuntos
Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Retina/metabolismo , Albumina Sérica Humana/química , Animais , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Humanos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/toxicidade , Tamanho da Partícula , Ratos , Degeneração Retiniana/metabolismo , Propriedades de Superfície , Fatores de Tempo , Distribuição Tecidual
7.
Clin Transl Radiat Oncol ; 15: 1-6, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30547098

RESUMO

•Of 310 brain tumors patients recruited, histology of 99 lesions was available.•Of those, 5 were histologically confirmed as radiation-induced malformations.•TRAMs cannot differentiate active tumor from vascular malformation.

8.
J Neurointerv Surg ; 10(7): 657-662, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28965105

RESUMO

PURPOSE: The region defined as 'at risk' penumbra by current CT perfusion (CTP) maps is largely overestimated. We aimed to quantitate the portion of true 'at risk' tissue within CTP penumbra and to determine the parameter and threshold that would optimally distinguish it from false 'at risk' tissue, that is, benign oligaemia. METHODS: Among acute stroke patients evaluated by multimodal CT (NCCT/CTA/CTP) we identified those that had not undergone endovascular/thrombolytic treatment and had follow-up NCCT. Maps of absolute and relative CBF, CBV, MTT, TTP and Tmax as well as summary maps depicting infarcted and penumbral regions were generated using the Intellispace Portal (Philips Healthcare, Best, Netherlands). Follow-up CT was automatically co-registered to the CTP scan and the final infarct region was manually outlined. Perfusion parameters were systematically analysed - the parameter that resulted in the highest true-negative-rate (ie, proportion of benign oligaemia correctly identified) at a fixed, clinically relevant false-negative-rate (ie, proportion of 'missed' infarct) of 15%, was chosen as optimal. It was then re-applied to the CTP data to produce corrected perfusion maps. RESULTS: Forty seven acute stroke patients met selection criteria. Average portion of infarcted tissue within CTP penumbra was 15%±2.2%. Relative CBF at a threshold of 0.65 yielded the highest average true-negative-rate (48%), enabling reduction of the false 'at risk' penumbral region by ~half. CONCLUSIONS: Applying a relative CBF threshold on relative MTT-based CTP maps can significantly reduce false 'at risk' penumbra. This step may help to avoid unnecessary endovascular interventions.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Angiografia Cerebral/métodos , Circulação Cerebrovascular/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/fisiopatologia , Angiografia Cerebral/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Imagem Multimodal/normas , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/fisiopatologia , Tomografia Computadorizada por Raios X/normas
9.
Front Neurol ; 9: 1087, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619047

RESUMO

Data from human biopsies, in-vitro and in-vivo models, strongly supports the role of thrombin, and its protease-activated receptor (PAR1) in the pathology and progression of glioblastoma (GBM), a high-grade glial tumor. Activation of PAR1 by thrombin stimulates vasogenic edema, tumor adhesion and tumor growth. We here present a novel six amino acid chloromethyl-ketone compound (SIXAC) which specifically inhibits PAR1 proteolytic activation and counteracts the over-activation of PAR1 by tumor generated thrombin. SIXAC effects were demonstrated in-vitro utilizing 3 cell-lines, including the highly malignant CNS-1 cell-line which was also used as a model for GBM in-vivo. The in-vitro effects of SIXAC on proliferation rate, invasion and thrombin activity were measured by XTT, wound healing, colony formation and fluorescent assays, respectively. The effect of SIXAC on GBM in-vivo was assessed by measuring tumor and edema size as quantified by MRI imaging, by survival follow-up and brain histopathology. SIXAC was found in-vitro to inhibit thrombin-activity generated by CNS-1 cells (IC50 = 5 × 10-11M) and significantly decrease proliferation rate (p < 0.03) invasion (p = 0.02) and colony formation (p = 0.03) of these cells. In the CNS-1 GBM rat animal model SIXAC was found to reduce edema volume ratio (8.8 ± 1.9 vs. 4.9 ± 1, p < 0.04) and increase median survival (16 vs. 18.5 days, p < 0.02 by Log rank Mental-Cox test). These results strengthen the important role of thrombin/PAR1 pathway in glioblastoma progression and suggest SIXAC as a novel therapeutic tool for this fatal disease.

10.
J Control Release ; 261: 138-146, 2017 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-28666727

RESUMO

Even though some progress in diagnosis and treatment has been made over the years, there is still no definitive treatment available for Glioblastoma multiforme (GBM). Convection-enhanced delivery (CED), a continuous infusion-mediated pressure gradient via intracranial catheters, studied in clinical trials, enables in situ drug concentrations several orders of magnitude greater than those achieved by systemic administration. We hypothesized that the currently limited efficacy of CED could be enhanced by a liposomal formulation, thus achieving enhanced drug localization to the tumor site with minimal toxicity. We hereby describe a novel approach for treating GBM by CED of liposomes containing the known chemotherapeutic agent, temozolomide (TMZ). A new technique for encapsulating TMZ in hydrophilic (PEGylated) liposomes, characterized by nano-size (121nm), low polydispersity index (<0.13) and with near-neutral charge (-ʒ,0.2mV), has been developed. Co-infusion of PEGylated Gd-DTPA liposomes and TMZ-liposomes by CED in GBM bearing rats, resulted in enhanced tumor detection with longer residence time than free Gd-DTPA. Treatment of GBM-bearing rats with either TMZ solution or TMZ-liposomes resulted in greater tumor inhibition and significantly higher survival. However, the longer survival and smaller tumor volumes exhibited by TMZ liposomal treatment in comparison to TMZ in solution were insignificant (p<0.053); and only significantly lower edema volumes were observed. Thus, there are no clear-cut advantages to use a liposomal delivery system of TMZ via CED over a drug solution.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/farmacocinética , Antineoplásicos Alquilantes/farmacologia , Convecção , Dacarbazina/administração & dosagem , Dacarbazina/farmacocinética , Dacarbazina/farmacologia , Gadolínio DTPA/administração & dosagem , Lipossomos , Masculino , Nanopartículas , Tamanho da Partícula , Polietilenoglicóis/química , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Taxa de Sobrevida , Temozolomida , Carga Tumoral
11.
Oncotarget ; 7(46): 74860-74871, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27556862

RESUMO

Temozolomide (TMZ) is an alkylating agent that has become the mainstay treatment of the most malignant brain cancer, glioblastoma multiforme (GBM). Unfortunately only a limited number of patients positively respond to it. It has been shown that zinc metal reestablishes chemosensitivity but this effect has not been tested with TMZ. Using both in vitro and in vivo experimental approaches, we investigated whether addition of zinc to TMZ enhances its cytotoxicity against GBM. In vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased with addition of zinc and this response was accompanied by an elevation of p21, PUMA, BAX and Caspase-3 expression and a decrease in growth fraction as manifested by low ki67 and lower colony formation. Analysis of GBM as intracranial xenografts in athymic mice and administration of concurrent TMZ and zinc yielded results consistent with those of the in vitro analyses. The co-treatment resulted in significant reduction in tumor volume in TMZ/zinc treated mice relative to treatment with TMZ alone. Our results suggest that zinc may serve as a potentiator of TMZ therapy in GBM patients.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/patologia , Dacarbazina/análogos & derivados , Glioblastoma/patologia , Zinco/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Caspase 3/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dacarbazina/farmacologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Camundongos , Temozolomida , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
12.
Radiol Oncol ; 50(1): 28-38, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27069447

RESUMO

BACKGROUND: Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. MATERIAL AND METHODS: Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. RESULTS: Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r(2) = 0.79; p < 0.008, r(2) = 0.91; p < 0.001). The results presented a strong plateau effect as the pulse number increased. The ratio between complete cell death and no cell death thresholds was relatively narrow (between 0.88-0.91) even for small numbers of pulses and depended weakly on the number of pulses. For BBB disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. CONCLUSIONS: The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.

13.
J Cereb Blood Flow Metab ; 35(6): 967-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25669901

RESUMO

Despite aggressive therapy, existing treatments offer poor prognosis for glioblastoma multiforme patients, in part due to poor penetration of most drugs across the blood-brain barrier (BBB). We propose a minimal-invasive combined treatment approach consisting of local BBB disruption in the tumor in parallel to systemic drug administration. Local BBB disruption is obtained by convection-enhanced delivery of a novel BBB disruption agent, enabling efficient/targeted delivery of the systemically administered drug by the tumors own vasculature. Various human serum albumin (HSA) analogs were synthesized and screened for BBB disruption efficacy in custom in vitro systems. The candidate analogs were then delivered into naïve rat brains by convection-enhanced delivery and screened for maximal BBB disruption and minimal brain toxicity. These studies found a noncationized/neutralized analog, ethylamine (EA)-HSA, to be the optimal BBB-opening agent. Immunocytochemical studies suggested that BBB disruption by EA-HSA may be explained by alterations in occludin expression. Finally, an efficacy study in rats bearing intracranial gliomas was performed. The rats were treated by convection-enhanced delivery of EA-HSA in parallel to systemic administration of Methotrexate, showing significant antineoplastic effects of the combined approached reflected in suppressed tumor growth and significantly (~x3) prolonged survival.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/patologia , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Metotrexato/administração & dosagem , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular , Convecção , Etilaminas/efeitos adversos , Etilaminas/síntese química , Etilaminas/química , Glioma/patologia , Humanos , Masculino , Metotrexato/uso terapêutico , Ratos , Ratos Endogâmicos Lew , Albumina Sérica/efeitos adversos , Albumina Sérica/síntese química , Albumina Sérica/química , Suínos
14.
Neuro Oncol ; 17(3): 457-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25452395

RESUMO

BACKGROUND: Conventional magnetic resonance imaging (MRI) is unable to differentiate tumor/nontumor enhancing tissues. We have applied delayed-contrast MRI for calculating high resolution treatment response assessment maps (TRAMs) clearly differentiating tumor/nontumor tissues in brain tumor patients. METHODS: One hundred and fifty patients with primary/metastatic tumors were recruited and scanned by delayed-contrast MRI and perfusion MRI. Of those, 47 patients underwent resection during their participation in the study. Region of interest/threshold analysis was performed on the TRAMs and on relative cerebral blood volume maps, and correlation with histology was studied. Relative cerebral blood volume was also assessed by the study neuroradiologist. RESULTS: Histological validation confirmed that regions of contrast agent clearance in the TRAMs >1 h post contrast injection represent active tumor, while regions of contrast accumulation represent nontumor tissues with 100% sensitivity and 92% positive predictive value to active tumor. Significant correlation was found between tumor burden in the TRAMs and histology in a subgroup of lesions resected en bloc (r(2) = 0.90, P < .0001). Relative cerebral blood volume yielded sensitivity/positive predictive values of 51%/96% and there was no correlation with tumor burden. The feasibility of applying the TRAMs for differentiating progression from treatment effects, depicting tumor within hemorrhages, and detecting residual tumor postsurgery is demonstrated. CONCLUSIONS: The TRAMs present a novel model-independent approach providing efficient separation between tumor/nontumor tissues by adding a short MRI scan >1 h post contrast injection. The methodology uses robust acquisition sequences, providing high resolution and easy to interpret maps with minimal sensitivity to susceptibility artifacts. The presented results provide histological validation of the TRAMs and demonstrate their potential contribution to the management of brain tumor patients.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Angiografia por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neoplasia Residual/patologia , Fatores de Tempo , Adulto Jovem
15.
Bioelectrochemistry ; 99: 30-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24976141

RESUMO

In spite of aggressive therapy, existing treatments offer poor prognosis for glioblastoma multiforme due to tumor infiltration into the surrounding brain as well as poor blood-brain barrier penetration of most therapeutic agents. In this paper we present a novel approach for a minimally invasive treatment and a non-invasive response assessment methodology consisting of applying intracranial point-source electroporation and assessing treatment effect volumes using magnetic resonance imaging. Using a unique setup of a single intracranial electrode and an external surface electrode we treated rats' brains with various electroporation protocols and applied magnetic resonance imaging to study the dependence of the physiological effects on electroporation treatment parameters. The extent of blood-brain barrier disruption and later volumes of permanent brain tissue damage were found to correlate significantly with the treatment voltages (r(2)=0.99, p<0.001) and the number of treatment pulses (r(2)=0.94, p<0.002). Blood-brain barrier disruption depicted 3.2±0.3 times larger volumes than the final permanent damage volumes (p<0.0001). These results indicate that it may be beneficial to use more than one modality of electroporation when planning a treatment for brain tumors.


Assuntos
Neoplasias Encefálicas/terapia , Encéfalo/patologia , Eletroporação/métodos , Glioblastoma/terapia , Animais , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/patologia , Eletroporação/instrumentação , Glioblastoma/patologia , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley
17.
PLoS One ; 7(12): e52008, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251672

RESUMO

The current standard of care for newly diagnosed glioblastoma multiforme (GBM) is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that our high resolution MRI-based delayed enhancement subtraction maps may be applied for clear depiction of tumor and non-tumoral tissues in patients with primary brain tumors and patients with brain metastases.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirurgia , Meios de Contraste , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica
18.
Int J Nanomedicine ; 6: 1595-602, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21904449

RESUMO

Convection-enhanced delivery (CED) is a novel approach for delivering drugs directly into brain tumors by intracranial infusion, enabling the distribution of high drug concentrations over large tissue volumes. This study was designed to present a method for binding methotrexate (MTX) to unique crystalline, highly ordered and superparamagnetic maghemite nanoparticles via human serum albumin (HSA) coating, optimized for CED treatments of gliomas. Naked nanoparticles and HSA- or polyethylene glycol (PEG)-coated nanoparticles with/without MTX were studied. In vitro results showed no toxicity and a similar cell-kill efficacy of the MTX-loaded particles via HSA coating to that of free MTX, while MTX-loaded particles via PEG coating showed low efficacy. In vivo, the PEG-coated nanoparticles provided the largest distributions in normal rat brain and long clearance times, but due to their low efficacy in vitro, were not considered optimal. The naked nanoparticles provided the smallest distributions and shortest clearance times. The HSA-coated nanoparticles (with/without MTX) provided good distributions and long clearance times (nearly 50% of the distribution volume remained in the brain 3 weeks post treatment). No MTX-related toxicity was noted. These results suggest that the formulation in which HSA was bound to our nanoparticles via a unique precipitation method, and MTX was bound covalently to the HSA, could enable efficient and stable drug loading with no apparent toxicity. The cell-kill efficacy of the bound MTX remained similar to that of free MTX, and the nanoparticles presented efficient distribution volumes and slow clearance times in vivo, suggesting that these particles are optimal for CED.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Compostos Férricos/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Metotrexato/administração & dosagem , Animais , Química Encefálica , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Convecção , Compostos Férricos/química , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Nanopartículas Metálicas/química , Metotrexato/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Ratos , Ratos Sprague-Dawley , Albumina Sérica/administração & dosagem , Albumina Sérica/farmacocinética , Distribuição Tecidual
19.
Int J Biol Sci ; 7(1): 1-8, 2010 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-21209786

RESUMO

The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI. These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Meios de Contraste/farmacocinética , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Extravasamento de Materiais Terapêuticos e Diagnósticos/fisiopatologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/patologia , Técnica de Subtração , Fatores de Tempo
20.
Prog Biophys Mol Biol ; 89(1): 93-120, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15826673

RESUMO

A large amount of data demonstrating the stochastic nature of gene expression and cell differentiation has accumulated during the last 40 years. These data suggest that a gene in a cell always has a certain probability of being activated at any time and that instead of leading to on and off switches in an all-or-nothing fashion, the concentration of transcriptional regulators increases or decreases this probability. In order to integrate these data in an appropriate theoretical frame, we have tested the relevance of the selective model of cell differentiation by computer simulation experiments. This model is based on stochastic gene expression controlled by cellular interactions. Our results show that it is readily able to produce tissue organization. A model involving only two cells generated a bi-layer cellular structure of finite growth. Cell death was not a drawback but an advantage because it improved the viability of this bi-layer structure. However, our results also show that cellular interactions cannot be simply based on raw selection between cells. Instead, tissue coordination includes at least two basic components: phenotypic autostabilization (differentiated cells stabilize their own phenotype) and interdependence for proliferation (differentiated cells stimulate the proliferation of alien phenotypes). In this modified autostabilization-selection model, cellular organization and growth arrest result from a quantitative equilibrium between the parameters controlling these two processes. An imbalance leads to tissue disorganization and invasive cancer-like growth. These findings suggest that cancer does not result solely from mutations in the cancerous cell but from the progressive addition of several small alterations of the equilibrium between autostabilization and interdependence for proliferation. In this frame, it is not solely the cancerous cell that is abnormal. The whole organism is involved. Tumor growth is a local effect of an imbalance between all the factors involved in tissue organization.


Assuntos
Desenvolvimento Embrionário , Regulação Neoplásica da Expressão Gênica , Modelos Biológicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/fisiopatologia , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Simulação por Computador , Homeostase , Humanos , Cinética , Modelos Estatísticos , Neoplasias/patologia , Seleção Genética , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA