Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(17): e202400619, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38403860

RESUMO

The unstable interface between Li metal and ethylene carbonate (EC)-based electrolytes triggers continuous side reactions and uncontrolled dendrite growth, significantly impacting the lifespan of Li metal batteries (LMBs). Herein, a bipolar polymeric protective layer (BPPL) is developed using cyanoethyl (-CH2CH2C≡N) and hydroxyl (-OH) polar groups, aiming to prevent EC-induced corrosion and facilitating rapid, uniform Li+ ion transport. Hydrogen-bonding interactions between -OH and EC facilitates the Li+ desolvation process and effectively traps free EC molecules, thereby eliminating parasitic reactions. Meanwhile, the -CH2CH2C≡N group anchors TFSI- anions through ion-dipole interactions, enhancing Li+ transport and eliminating concentration polarization, ultimately suppressing the growth of Li dendrite. This BPPL enabling Li|Li cell stable cycling over 750 cycles at 10 mA cm-2 for 2 mAh cm-2. The Li|LiNi0.8Mn0.1Co0.1O2 and Li|LiFePO4 full cells display superior electrochemical performance. The BPPL provides a practical strategy to enhanced stability and performance in LMBs application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA