Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(10): e2306092, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145335

RESUMO

Peripheral T-cell lymphoma (PTCL) is a highly heterogeneous group of mature T-cell malignancies. The efficacy of current first-line treatment is dismal, and novel agents are urgently needed to improve patient outcomes. A close association between the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway and tumor promotion exists, revealing prospective therapeutic targets. This study, investigates the role of the cGAS-STING pathway and its underlying mechanisms in PTCL progression. Single-cell RNA sequencing showes that the cGAS-STING pathway is highly expressed and closely associated with PTCL proliferation. cGAS inhibition suppresses tumor growth and impaires DNA damage repair. Moreover, Cdc2-like kinase 1 (CLK1) is critical for residual tumor cell survival after treatment with cGAS inhibitors, and CLK1 suppression enhances sensitivity to cGAS inhibitors. Single-cell dynamic transcriptomic analysis indicates reduced proliferation-associated nascent RNAs as the underlying mechanism. In first-line therapy, chemotherapy-triggered DNA damage activates the cGAS-STING pathway, and cGAS inhibitors can synergize with chemotherapeutic agents to kill tumors. The cGAS-STING pathway is oncogenic in PTCL, whereas targeting cGAS suppresses tumor growth, and CLK1 may be a sensitivity indicator for cGAS inhibitors. These findings provide a theoretical foundation for optimizing therapeutic strategies for PTCL, especially in patients with relapsed/refractory disease.


Assuntos
Linfoma de Células T Periférico , Humanos , Nucleotidiltransferases , Sobrevivência Celular , Transformação Celular Neoplásica , Dano ao DNA
2.
Br J Haematol ; 203(4): 571-580, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803485

RESUMO

This study aimed to investigate a stratified approach based on hepatitis B virus (HBV) surface antibody (anti-HBs) for managing HBV reactivation (HBVr) in lymphoma patients with serological protection against HBV. A retrospective analysis was conducted on 209 lymphoma patients with a baseline anti-HBs titre of ≥10 iu/L, who were either positive or negative for HBV core antibody (anti-HBc). The results revealed that 15.7% of patients lost serological protection following 6-month anti-lymphoma therapy. With a median follow-up of 28.1 months, the cumulative rates of HBVr at 6 months, 2 years and 4 years were 2.9%, 4.7% and 6.3% respectively. Without intervention, the overall rate of reactivation was 2.0% for patients with isolated anti-HBs and 10.5% for those with positive anti-HBs and anti-HBc. To identify patients at high risk of losing seroprotection and susceptible to HBVr, a predictive model was developed. The high-risk group had significantly higher rates of serological protection loss (27.8% vs. 2.2%) and cumulative incidence of HBVr (22.0% vs. 0%) compared to the low-risk group. Overall, this study highlights the risk of HBVr in lymphoma patients with positive anti-HBs, with or without positive anti-HBc, and recommends periodic monitoring for low-risk patients and early intervention for high-risk patients.


Assuntos
Hepatite B , Linfoma , Humanos , Vírus da Hepatite B/fisiologia , Rituximab/uso terapêutico , Estudos Retrospectivos , Antígenos de Superfície da Hepatite B , Anticorpos Anti-Hepatite B , Linfoma/tratamento farmacológico , Linfoma/induzido quimicamente , Hepatite B/prevenção & controle , Ativação Viral
3.
Adv Sci (Weinh) ; 10(34): e2304895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821382

RESUMO

Chronic lymphocytic leukemia (CLL) is a hematological malignancy with high metabolic heterogeneity. N6-methyladenosine (m6A) modification plays an important role in metabolism through regulating circular RNAs (circRNAs). However, the underlying mechanism is not yet fully understood in CLL. Herein, an m6A scoring system and an m6A-related circRNA prognostic signature are established, and circTET2 as a potential prognostic biomarker for CLL is identified. The level of m6A modification is found to affect the transport of circTET2 out of the nucleus. By interacting with the RNA-binding protein (RBP) heterogeneous nuclear ribonucleoprotein C (HNRNPC), circTET2 regulates the stability of CPT1A and participates in the lipid metabolism and proliferation of CLL cells through mTORC1 signaling pathway. The mTOR inhibitor dactolisib and FAO inhibitor perhexiline exert a synergistic effect on CLL cells. In addition, the biogenesis of circTET2 can be affected by the splicing process and the RBPs RBMX and YTHDC1. CP028, a splicing inhibitor, modulates the expression of circTET2 and shows pronounced inhibitory effects. In summary, circTET2 plays an important role in the modulation of lipid metabolism and cell proliferation in CLL. This study demonstrates the clinical value of circTET2 as a prognostic indicator as well as provides novel insights in targeting treatment for CLL.


Assuntos
Ácidos Graxos , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Leucemia Linfocítica Crônica de Células B , RNA Circular , Humanos , Proliferação de Células , Ácidos Graxos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Metabolismo dos Lipídeos/genética , RNA Circular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA