Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(17): 4217-4231, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596904

RESUMO

Numerous studies have shown that there are multiple neural activities involved in the process of bone resorption and bone regeneration, and promoting osteogenesis by promoting neural network reconstruction is an effective strategy for repairing critical size bone defects. However, traumatic bone defects often cause activation of the sympathetic nervous system (SNS) in the damaged area, releasing excess catecholamines (CAs), resulting in a decrease in the rate of bone formation. Herein, a 3D-printed scaffold loaded with propranolol (PRN) is proposed to reduce CA concentrations in bone defect areas and promote bone regeneration through drug release. For this purpose, PRN-loaded methacrylated gelatin (GelMA) microspheres were mixed with low-concentration GelMA and perfused into a 3D-printed porous hydroxyapatite (HAp) scaffold. By releasing PRN, which can block ß-adrenergic receptors, it hinders the activation of sympathetic nerves and inhibits the release of excess CA by the SNS. At the same time, the composite scaffold recruits bone marrow mesenchymal stem cells (BMSCs) and promotes the differentiation of BMSCs in the direction of osteoblasts, which effectively promotes bone regeneration in the rabbit femoral condyle defect model. The results of the study showed that the release of PRN from the composite scaffold could effectively hinder the activation of sympathetic nerves and promote bone regeneration, providing a new strategy for the treatment of bone defects.


Assuntos
Regeneração Óssea , Células-Tronco Mesenquimais , Impressão Tridimensional , Sistema Nervoso Simpático , Alicerces Teciduais , Regeneração Óssea/efeitos dos fármacos , Animais , Coelhos , Sistema Nervoso Simpático/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Alicerces Teciduais/química , Propranolol/farmacologia , Propranolol/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Gelatina/química , Osteogênese/efeitos dos fármacos , Durapatita/química , Durapatita/farmacologia
2.
Int J Nanomedicine ; 18: 5815-5830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869064

RESUMO

Purpose: Large bone defects caused by congenital defects, infections, degenerative diseases, trauma, and tumors often require personalized shapes and rapid reconstruction of the bone tissue. Three-dimensional (3D)-printed bone tissue engineering scaffolds exhibit promising application potential. Fused deposition modeling (FDM) technology can flexibly select and prepare printed biomaterials and design and fabricate bionic microstructures to promote personalized large bone defect repair. FDM-3D printing technology was used to prepare polylactic acid (PLA)/nano ß-tricalcium phosphate (TCP) composite bone tissue engineering scaffolds in this study. The ability of the bone-tissue-engineered scaffold to repair bone defects was evaluated in vivo and in vitro. Methods: PLA/nano-TCP composite bone tissue engineering scaffolds were prepared using FDM-3D printing technology. The characterization data of the scaffolds were obtained using relevant detection methods. The physical and chemical properties, biocompatibility, and in vitro osteogenic capacity of the scaffolds were investigated, and their bone repair capacity was evaluated using an in vivo animal model of rabbit femur bone defects. Results: The FDM-printed PLA/nano ß-TCP composite scaffolds exhibited good personalized porosity and shape, and their osteogenic ability, biocompatibility, and bone repair ability in vivo were superior to those of pure PLA. The merits of biodegradable PLA and bioactive nano ß-TCP ceramics were combined to improve the overall biological performance of the composites. Conclusion: The FDM-printed PLA/nano-ß-TCP composite scaffold with a ratio of 7:3 exhibited good personalized porosity and shape, as well as good osteogenic ability, biocompatibility, and bone repair ability. This study provides a promising strategy for treating large bone defects.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Coelhos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Osteogênese , Poliésteres/química , Osso e Ossos , Impressão Tridimensional
3.
J Mater Chem B ; 11(4): 837-851, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36594635

RESUMO

The delayed healing of diabetic wounds is directly affected by the disturbance of wound microenvironment, resulting from persistent inflammation, insufficient angiogenesis, and impaired cell functions. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) showed considerable therapeutic potential in diabetic wound healing. However, the low retention rate of MSC-EVs at wound sites hampers their efficacy. For skin wounds exposed to the outer environment, using a hydrogel with tissue adhesiveness under a moist wound condition is a promising strategy for wound healing. In this study, we modified methacryloyl-modified gelatin (GelMA) hydrogel with catechol motifs of dopamine to fabricate a GelMA-dopamine hydrogel. EVs isolated from MSCs were applied in the synthesized GelMA-dopamine hydrogel to prepare a GelMA-dopamine-EV hydrogel. The results demonstrated that the newly formed GelMA-dopamine hydrogel possessed improved properties of softness, adhesiveness, and absorptive capacity, as well as high biocompatibility in the working concentration (15% w/v). In addition, MSC-EVs were verified to promote cell migration and angiogenesis in vitro. In the skin wound model of diabetic rats, the GelMA-dopamine-EV hydrogel exerted prominent wound healing efficacy estimated by collagen deposition, skin appendage regeneration, and the expression of IL-6, CD31, and TGF-ß. In conclusion, this combination of MSC-EVs and the modified hydrogel not only accelerates wound closure but also promotes skin structure normalization by rescuing the homeostasis of the healing microenvironment of diabetic wounds, which provides a potential approach for the treatment of diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Vesículas Extracelulares , Células-Tronco Mesenquimais , Ratos , Animais , Hidrogéis/química , Diabetes Mellitus Experimental/tratamento farmacológico , Adesivos/farmacologia , Adesivos/uso terapêutico , Dopamina/uso terapêutico , Cicatrização/fisiologia , Gelatina/química
4.
J Mater Chem B ; 10(22): 4172-4188, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35531933

RESUMO

A cell-laden tissue engineering scaffold for osteochondral integrated repair is one of the ideal strategies for osteochondral lesions. In this study, we fabricated cell-laden porous hydrogel scaffolds with gradient nano-hydroxyapatite using methacrylic anhydride gelatin (GelMA), nano-hydroxyapatite (nHA), and polyethylene oxide (PEO) solution for osteochondral tissue regeneration. The scaffold possessed interconnected pores and a nano-hydroxyapatite gradient in the vertical direction. The chemical, physical, mechanical, and biological properties of the hydrogel solutions and scaffolds were characterized. In vitro experiments confirmed that cells were distributed homogeneously and that different pore structures could affect the proliferation and differentiation of BMSCs. The Nonporous hydrogel was beneficial for the chondrogenic differentiation of BMSCs and interconnected pores were conducive to BMSC proliferation and osteogenic differentiation. The osteochondral integrative repair capacity of the scaffold was assessed by implanting the scaffolds into the intercondylar defect of the rabbit femur. By constructing pore structures in different layers, the cells in different layers of the hydrogels were in an intrinsic environment for survival and differentiation. Animal experiments confirmed that tissue engineering scaffolds for osteochondral lesions require different pore structures in different layers, and gradient structure facilitated integrated repair.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Biomimética , Durapatita/química , Hidrogéis , Coelhos , Alicerces Teciduais/química
5.
Front Bioeng Biotechnol ; 9: 770049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926420

RESUMO

Large-segment bone defect caused by trauma or tumor is one of the most challenging problems in orthopedic clinics. Biomimetic materials for bone tissue engineering have developed dramatically in the past few decades. The organic combination of biomimetic materials and stem cells offers new strategies for tissue repair, and the fate of stem cells is closely related to their extracellular matrix (ECM) properties. In this study, a photocrosslinked biomimetic methacrylated gelatin (Bio-GelMA) hydrogel scaffold was prepared to simulate the physical structure and chemical composition of the natural bone extracellular matrix, providing a three-dimensional (3D) template and extracellular matrix microenvironment. Bone marrow mesenchymal stem cells (BMSCS) were encapsulated in Bio-GelMA scaffolds to examine the therapeutic effects of ECM-loaded cells in a 3D environment simulated for segmental bone defects. In vitro results showed that Bio-GelMA had good biocompatibility and sufficient mechanical properties (14.22kPa). A rat segmental bone defect model was constructed in vivo. The GelMA-BMSC suspension was added into the PDMS mold with the size of the bone defect and photocured as a scaffold. BMSC-loaded Bio-GelMA resulted in maximum and robust new bone formation compared with hydrogels alone and stem cell group. In conclusion, the bio-GelMA scaffold can be used as a cell carrier of BMSC to promote the repair of segmental bone defects and has great potential in future clinical applications.

6.
Mater Sci Eng C Mater Biol Appl ; 130: 112423, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34702546

RESUMO

The current gold standard for auricular reconstruction after microtia or ear trauma is the autologous cartilage graft with an autologous skin flap overlay. Harvesting autologous cartilage requires an additional surgery that may result in donor area complications. In addition, autologous cartilage is limited and the auricular reconstruction requires complex sculpting, which requires excellent clinical skill and is very time consuming. This work explores the use of 3D printing technology to fabricate bioactive artificial auricular cartilage using chondrocyte-laden gelatin methacrylate (GelMA) and polylactic acid (PLA) for auricle reconstruction. In this study, chondrocytes were loaded within GelMA hydrogel and combined with the 3D-printed PLA scaffolds to biomimetic the biological mechanical properties and personalized shape. The printing accuracy personalized scaffolds, biomechanics and chondrocyte viability and biofunction of artificial auricle have been studied. It was found that chondrocytes were fixed in the PLA auricle scaffolds via GelMA hydrogels and exhibited good proliferative properties and cellular activity. In addition, new chondrocytes and chondrogenic matrix, as well as type II collagen were observed after 8 weeks of implantation. At the same time, the transplanted auricle complex kept full and delicate auricle shape. This study demonstrates the potential of using 3D printing technology to construct in vitro living auricle tissue. It shows a great prospect in the clinical application of auricle regeneration.


Assuntos
Condrócitos , Gelatina , Hidrogéis , Metacrilatos , Poliésteres , Impressão Tridimensional , Regeneração , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA